ω-Regular Properties of Linear Recurrence Sequences

Edon Kelmendi
Oxford University

Shaull Almagor	Toghrul Karimov	Joël Ouaknine	James Worrell
Technion	MPI-SWS	MPI-SWS \& Oxford	Oxford

$$
u_{n}=a_{a_{1}}^{Q} u_{n-1}+a_{2} u_{n-2}+\cdots+a_{d-1} u_{n-(d-1)} a_{d} u_{n-d} \quad n>d
$$

$$
\begin{aligned}
& \text { Q Q Q } \\
& u_{n}=a_{1} u_{n-1}+a_{2} u_{n-2}+\cdots+a_{d-1} u_{n-(d-1)} a_{d} u_{n-d} \quad n>d
\end{aligned}
$$

$$
u_{n}=P_{1}^{\bar{Q}[x]} P_{1}(n) \Lambda_{1}^{n}+\cdots+P_{d}(n) \Lambda_{d}^{n} \quad n \in \mathbb{N}
$$

$$
u_{n}=\frac{8}{5} u_{n-1}-u_{n-2} \quad\left(u_{1}=\frac{4}{5} \quad u_{2}=\frac{7}{25}\right)
$$

For example

$$
u_{n}=\frac{8}{5} u_{n-1}-u_{n-2} \quad\left(u_{1}=\frac{4}{5} \quad u_{2}=\frac{7}{25}\right)
$$

$$
\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{4}{5} & \frac{3}{5} \\
-\frac{3}{5} & \frac{4}{5}
\end{array}\right)^{n} \cdot\binom{0}{1}
$$

$$
u_{n}=\frac{8}{5} u_{n-1}-u_{n-2} \quad\left(u_{1}=\frac{4}{5} \quad u_{2}=\frac{7}{25}\right)
$$

$$
\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{4}{5} & \frac{3}{5} \\
-\frac{3}{5} & \frac{4}{5}
\end{array}\right)^{n} \cdot\binom{0}{1}
$$

$$
u_{n}=\frac{1}{2}\left(\frac{4}{5}-\frac{3}{5} \mathbf{i}\right)^{n}+\frac{1}{2}\left(\frac{4}{5}+\frac{3}{5} \mathbf{i}\right)^{n}
$$

Goal: verify properties of $\left\langle u_{n}\right\rangle_{n \in \mathbb{N}}$ algorithmically

$$
\mathrm{q} \cdot M^{n} \quad n \in \mathbb{N}
$$

[^0]$$
\mathrm{q} \cdot M^{n} \quad n \in \mathbb{N}
$$

- - -

$$
\mathrm{q} \cdot M^{n} \quad n \in \mathbb{N}
$$

- ○○

$$
\mathrm{q} \cdot M^{n} \quad n \in \mathbb{N}
$$

- ○○○

-○○○○...

-○○○○…
Ideally we would like a procedure for:
INPUT: partition, $\mathbf{q}, M, \mathcal{A}$ (Büchi automaton) OUTPUT: Is © ○○ ... accepted by \mathcal{A} ?

Theorem
There is a procedure for diagonalisable prefix-independent

INPUT: partition, $\mathbf{q}, M, \mathcal{A}$ (Büchi automaton) OUTPUT: Is \bullet - \ldots accepted by \mathcal{A} ?

Where are the zeros?

$\left\langle u_{n}\right\rangle_{n \in \mathbb{N}}$	2	-1	0	8	-12	0	24	-34	0	\cdots
ζ	\pm	\pm	0	\pm	\pm	0	\pm	\pm	0	\cdots

What can we say about the word ζ ?

$\left\langle u_{n}\right\rangle_{n \in \mathbb{N}}$	2	-1	0	8	-12	0	24	-34	0	\ldots
ζ	\pm	\pm	0	\pm	\pm	0	\pm	\pm	0	\ldots

What can we say about the word ζ ?
Theorem (Skolem-Mahler-Lech)
ζ is ultimately-periodic i.e:

$$
\zeta=w_{1} w_{2}^{\omega}
$$

$\left\langle u_{n}\right\rangle_{n \in \mathbb{N}}$	2	-1	0	8	-12	0	24	-34	0	\cdots
ζ	\pm	\pm	0	\pm	\pm	0	\pm	\pm	0	\cdots

What can we say about the word ζ ?

Theorem (Skolem-Mahler-Lech)
ζ is ultimately-periodic i.e:

$$
\zeta=w_{1} w_{2}^{\omega}
$$

- w_{2} can be computed (Berstel and Mignotte 1976),
- computing w_{1} has been open for a while,
- asymptotic behavior is simpler

$\left\langle u_{n}\right\rangle_{n \in \mathbb{N}}$	2	-1	0	8	-12	0	24	-34	0	\ldots
σ	+	-	0	+	-	0	+	-	0	\ldots

$\left\langle u_{n}\right\rangle_{n \in \mathbb{N}}$	2	-1	0	8	-12	0	24	-34	0	\cdots
σ	+	-	0	+	-	0	+	-	0	\ldots

Is σ ultimately-periodic as well?

$\left\langle u_{n}\right\rangle_{n \in \mathbb{N}}$	2	-1	0	8	-12	0	24	-34	0	\ldots
σ	+	-	0	+	-	0	+	-	0	\ldots

Is σ ultimately-periodic as well?
counter-example

$$
\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
4 / 5 & 3 / 5 \\
-3 / 5 & 4 / 5
\end{array}\right)^{n} \cdot\binom{0}{1}=\cos (n \overbrace{\theta}^{\arg (4 / 5-3 / 5 \mathbf{i})})
$$

Lemma
The sign description σ of diagonalisable sequences is almost-periodic.
abbbaabababababbabbbababbabababbbabababbabbbababababbb...
abbbaabababababbabbbababbabababbbabababbabbbababababbb...

Definition

An infinite word $\alpha \in \Sigma^{\omega}$ is almost-periodic if for every word $w \in \Sigma^{*}$, there exists $p \in \mathbb{N}$ such that either:

- w does not occur in α after position p, or
- w occurs in every factor of α of length p.

Synonyms: uniformly recurrent sequence, minimal sequence. Examples: ultimately-periodic words, Sturmian words, Thue-Morse Non-example: $a b a^{2} b a^{3} b a^{4} b \cdots$.

Theorem (Semenov 1984)
mso theory of $(\mathbb{N},>, P)$ is decidable when P is effectively almost-periodic.

Theorem (Semenov 1984)
mso theory of $(\mathbb{N},>, P)$ is decidable when P is effectively almost-periodic.

There is a procedure for:

INPUT: \mathcal{A} (Büchi automaton)
OUTPUT: Is •\&•••\&

Lemma
The sign description σ of diagonalisable sequences is almost-periodic.

1. Reduce to a much simpler linear recurrence sequence
2. Use a compactness argument to derive the bound

Lemma
The sign description σ of diagonalisable sequences is almost-periodic.

First

Lemma
The sign description σ of diagonalisable sequences is almost-periodic.

First

Proposition.

$$
\exists n_{0} \forall n>n_{0}|D(n)|>|R(n)| .
$$

Lemma
The sign description σ of diagonalisable sequences is almost-periodic.

First

$$
\begin{array}{cc}
u_{n}=c_{1} \Lambda_{1}^{n}+\cdots+c_{d} \Lambda_{d}^{n} & \left|\Lambda_{1}\right| \geq\left|\Lambda_{2}\right| \geq \cdots \geq\left|\Lambda_{d}\right| \\
c_{1} \Lambda_{1}^{n}+\cdots+c_{r} \Lambda_{r}^{n}+c_{r+1} \Lambda_{r+1}^{n}+\cdots+c_{d} \Lambda_{d}^{n} & \left|\Lambda_{1}\right|=\cdots=\left|\Lambda_{r}\right|>\left|\Lambda_{r+1}\right| \\
\mid R(n) & \\
& \cos (n \theta)+2^{-n}
\end{array}
$$

Proposition.

$$
\exists n_{0} \forall n>n_{0} \quad|D(n)|>|R(n)| .
$$

Lemma

The sign description σ of diagonalisable sequences is almost-periodic.

First

$$
\begin{array}{cc}
u_{n}=c_{1} \Lambda_{1}^{n}+\cdots+c_{d} \Lambda_{d}^{n} & \left|\Lambda_{1}\right| \geq\left|\Lambda_{2}\right| \geq \cdots \geq\left|\Lambda_{d}\right| \\
c_{1} \Lambda_{1}^{n}+\cdots+c_{r} \Lambda_{r}^{n}+c_{r+1} \Lambda_{r+1}^{n}+\cdots+c_{d} \Lambda_{d}^{n} & \left|\Lambda_{1}\right|=\cdots=\left|\Lambda_{r}\right|>\left|\Lambda_{r+1}\right| \\
\mid & \\
& \cos (n)
\end{array}
$$

Proposition.

$$
\exists n_{0} \forall n>n_{0} \quad|D(n)|>|R(n)| .
$$

Proof. Using bounds on sums of S-units. p-adic subspace theorem.
(Evertse 1984)(Van der Poorten \& Schlickewei 1982)

Lemma

The sign description σ of diagonalisable sequences is almost-periodic.

First

$$
\left|\Lambda_{1}\right| \geq\left|\Lambda_{2}\right| \geq \cdots \geq\left|\Lambda_{d}\right|
$$

$$
\left|\Lambda_{1}\right|=\cdots=\left|\Lambda_{r}\right|>\left|\Lambda_{r+1}\right|
$$

Proposition.

$$
\exists n_{0} \forall n>n_{0} \quad|D(n)|>|R(n)| .
$$

Proof. Using bounds on sums of S-units. p-adic subspace theorem.
(Evertse 1984)(Van der Poorten \& Schlickewei 1982)

Almost-periodic σ, PROOF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

Almost-Periodic σ, PROoF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
\left\{\left(\lambda_{1}^{n}, \ldots, \lambda_{r}^{n}\right): n \in \mathbb{N}\right\} \subset \mathbb{T}^{r}
$$

Almost-Periodic σ, PROoF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
\left\{\left(\lambda_{1}^{n}, \ldots, \lambda_{r}^{n}\right): n \in \mathbb{N}\right\} \subset \mathbb{T}^{r}
$$

Almost-Periodic σ, PROoF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
\left\{\left(\lambda_{1}^{n}, \ldots, \lambda_{r}^{n}\right): n \in \mathbb{N}\right\} \subset \mathbb{T}^{r}
$$

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

There is a subset $\mathbb{T}_{\lambda} \subseteq \mathbb{T}^{r}$ that is:

- compact,
- semialgebraic,
- can effectively be constructed, and
- $\left\{\left(\lambda_{1}^{n}, \ldots, \lambda_{r}^{n}\right): n \in \mathbb{N}\right\}$ is dense in \mathbb{T}_{λ} - small over-approximation

Almost-Periodic σ, PROoF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
f: \mathbb{T}_{\lambda} \rightarrow \mathbb{R} \quad\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(c_{1} x_{1}, \ldots, c_{r} x_{r}\right)
$$

Almost-Periodic σ, PROoF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
f: \mathbb{T}_{\lambda} \rightarrow \mathbb{R} \quad\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(c_{1} x_{1}, \ldots, c_{r} x_{r}\right)
$$

Almost-periodic σ, PROOF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
f: \mathbb{T}_{\lambda} \rightarrow \mathbb{R} \quad\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(c_{1} x_{1}, \ldots, c_{r} x_{r}\right)
$$

$$
\begin{array}{r}
f^{-1}(\{x: x>0\}) \\
\text { open }
\end{array}
$$

in the next time-step

Almost-Periodic σ, PROoF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
f: \mathbb{T}_{\lambda} \rightarrow \mathbb{R} \quad\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(c_{1} x_{1}, \ldots, c_{r} x_{r}\right)
$$

$$
\begin{array}{r}
f^{-1}(\{x: x>0\}) \\
\text { open }
\end{array}
$$

in the next time-step

Almost-periodic σ, PROOF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
f: \mathbb{T}_{\lambda} \rightarrow \mathbb{R} \quad\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(c_{1} x_{1}, \ldots, c_{r} x_{r}\right)
$$

in two time-steps

Almost-Periodic σ, PROOF

We have reduced to analysing the sign of

$$
v_{n}=c_{1} \lambda_{1}^{n}+\cdots+c_{r} \lambda_{r}^{n}, \quad\left(\left|\lambda_{1}\right|=\cdots=\left|\lambda_{r}\right|=1\right)
$$

(We have to show that the distance between consecutive positive indices is bounded)

$$
f: \mathbb{T}_{\lambda} \rightarrow \mathbb{R} \quad\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(c_{1} x_{1}, \ldots, c_{r} x_{r}\right)
$$

$$
\text { density } \Rightarrow\left\{\lambda^{-n} P: n \in \mathbb{N}\right\} \text { is an open cover of } \mathbb{T}_{\lambda}
$$

compactness \Rightarrow admits a finite sub-cover

Lemma
The sign description σ of diagonalisable sequences is almost-periodic.

- Words with 0 need more care (we have to apply Skolem's theorem)

Lemma
The sign description σ of diagonalisable sequences is almost-periodic.

- Words with 0 need more care (we have to apply Skolem's theorem)

We want to decide: given \mathcal{A}, does \mathcal{A} accept σ.

For this we need to be able to compute some things about σ.

Furthermore, (since T_{λ} is semialgebraic and c_{i}, λ_{i} are algebraic) by manipulating $\operatorname{FO}(\mathbb{R},>,+, \cdot, 0,1)$ formulas we can:

- decide whether a word w occurs infinitely often in σ,
- if it does, compute a bound on the distance between consecutive occurrences.

Furthermore, (since T_{λ} is semialgebraic and c_{i}, λ_{i} are algebraic) by manipulating $\mathrm{FO}(\mathrm{R},>,+, \cdot, 0,1)$ formulas we can:

- decide whether a word w occurs infinitely often in σ,
- if it does, compute a bound on the distance between consecutive occurrences.

Define a subroutine:

$$
\begin{aligned}
\operatorname{inter}_{\sigma}: \quad \Sigma^{*} & \rightarrow\{\mathbf{n o}\} \cup \mathcal{P}\left(\Sigma^{*}\right) \\
w & \mapsto \begin{cases}\mathbf{n o} & \text { if } w \text { does not occur i.o. in } \sigma \\
\left\{w_{1}, \ldots, w_{k}\right\} & \text { otherwise }\end{cases} \\
\sigma & =v w w_{3} w w_{1} w w_{k-1} \ldots
\end{aligned}
$$

Theorem

The following problem is decidable:
INPUT: \mathcal{A} (deterministic and prefix-independent Müller automaton), inter ${ }_{\sigma}$ OUTPUT: Does \mathcal{A} accept σ ?
$\mathbf{W}:=\mathbf{a} \quad$ (for some $a \in \Sigma$ for which $\left.\operatorname{inter}_{\sigma}(a) \neq \mathbf{n o}\right)$
while(true):
$\left\{w_{1}, \ldots, w_{k}\right\}:=\operatorname{inter}_{\sigma}(w)$
if $\exists q \in Q$ and w_{i}, w_{j} such that we see more states
if from q with $w w_{i} w w_{j}$ than we do from q with w
then

$$
\begin{aligned}
& \quad w:=w w_{i} w w_{j} \\
& \text { else } \\
& \text { break }
\end{aligned}
$$

$$
\left\{q, q_{1}, q_{2}\right\} \supset\left\{q, q_{1}\right\}
$$

Choose $q:=q_{i}$ such that $X:=X_{i}$ has minimal cardinality among $X_{0}, X_{1}, \ldots, X_{k}$
return yes if and only if X is a final set of states

Choose $q:=q_{i}$ such that $X:=X_{i}$ has minimal cardinality among $X_{0}, X_{1}, \ldots, X_{k}$
return yes if and only if X is a final set of states

Correctness.

$$
\sigma=p W_{2} w_{2} w_{4} w_{1} w_{1}
$$

Choose $q:=q_{i}$ such that $X:=X_{i}$ has minimal cardinality among $X_{0}, X_{1}, \ldots, X_{k}$
return yes if and only if X is a final set of states
Correctness.

$$
\sigma=p W_{2} w_{2} W_{4} w_{1} w_{1}
$$

$X \cup Y_{1}=X$
(cannot see more states)

Choose $q:=q_{i}$ such that $X:=X_{i}$ has minimal cardinality among $X_{0}, X_{1}, \ldots, X_{k}$
return yes if and only if X is a final set of states
Correctness.

$$
\sigma=p w w_{2} w w_{4} w w_{1} w \cdots
$$

(from the minimality)

$X \cup Y_{1}=X$
(cannot see more states)

Some suffix of σ is accepted by \mathcal{A} started in state q

Some suffix of σ is accepted by \mathcal{A} started in state q

implies

σ is accepted by \mathcal{A} (because \mathcal{A} is prefix-independent)

- ○○○○ - ..

Theorem
There is a procedure for diagonalisable prefix-independent

INPUT: semialgebraic partition, q, M, \mathcal{A} (Büchi automaton) OUTPUT: Is 〇 ○ … accepted by \mathcal{A} ?

- • ○ • • • ..

Theorem
There is a procedure for diagonalisable prefix-independent

INPUT: semialgebraic partition, q, M, \mathcal{A} (Büchi automaton) OUTPUT: Is ○○○ … accepted by \mathcal{A} ?

LRS are closed under component-wise product and addititon (Presented 1 dimensional case only)

- For general LRS, complications are witnessed by the fact that σ for a non-diagonalisable LRS is not necessarily almost-periodic (a decision procedure for "+ i.o" can be used to compute Lagrange constants)
- This positive result was known for the formula "+ i.o" (Ouaknine, Worrell 2014)
- Since a Markov chain is a LRS, it has some implications for logics presented on: (Agrawal, Akshay, Genest, Thiagarajan 2015), (Beauquier, Rabinovich, Slissenko, 2006)
- For general LRS, complications are witnessed by the fact that σ for a non-diagonalisable LRS is not necessarily almost-periodic (a decision procedure for "+ i.o" can be used to compute Lagrange constants)
- This positive result was known for the formula "+ i.o" (Ouaknine, Worrell 2014)
- Since a Markov chain is a LRS, it has some implications for logics presented on: (Agrawal, Akshay, Genest, Thiagarajan 2015), (Beauquier, Rabinovich,
Slissenko, 2006)

$$
\begin{aligned}
& \text { while }(\text { true }): \\
& \qquad \begin{aligned}
& x=3 x+2 y \\
& y=-15 z \\
& z=2 x ; \\
& \text { if }\left(15 x^{\wedge} 2-2 x>3 y\right) \\
& \text { if }(-2 z++ \\
&a+2 y<0) \\
& b++
\end{aligned}
\end{aligned}
$$

$$
\text { Is } a_{n}=O\left(b_{n}\right) ?
$$

Thank you

[^0]: \mathbb{R}^{d}

