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Goal: verify properties of ⟨un⟩n∈ℕ algorithmically

















What we proved?



Where are the zeros?

⟨un⟩n∈ℕ 2 −1 0 8 −12 0 24 −34 0 ⋯
𝜁 ± ± 0 ± ± 0 ± ± 0 ⋯

What can we say about the word 𝜁 ?

Theorem (Skolem-Mahler-Lech)

𝜁 is ultimately-periodic i.e:

𝜁 = w1w𝜔
2 .

∙ w2 can be computed (Berstel and Mignotte 1976),
∙ computing w1 has been open for a while,
∙ asymptotic behavior is simpler
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Main observation

Lemma

The sign description 𝜎 of diagonalisable sequences is almost-periodic.
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Almost-periodic words

Definition

An infinite word 𝛼 ∈ Σ𝜔 is almost-periodic if for every word w ∈ Σ∗, there
exists p ∈ ℕ such that either:

∙ w does not occur in 𝛼 after position p, or
∙ w occurs in every factor of 𝛼 of length p.

Synonyms: uniformly recurrent sequence, minimal sequence.
Examples: ultimately-periodic words, Sturmian words, Thue-Morse
Non-example: aba2ba3ba4b⋯ .



What is so desirable about almost-periodic words?

Theorem (Semenov 1984)

mso theory of (ℕ, >, P) is decidable when P is effectively almost-periodic.
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How do we prove the main lemma?

Lemma
The sign description 𝜎 of diagonalisable sequences is almost-periodic.

1. Reduce to a much simpler linear recurrence sequence

2. Use a compactness argument to derive the bound
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Almost-periodic 𝜎, proof

We have reduced to analysing the sign of

vn = c1𝜆n1 + ⋯ + cr𝜆nr , (|𝜆1| = ⋯ = |𝜆r | = 1)

(We have to show that the distance between consecutive positive indices is bounded)
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Lemma

The sign description 𝜎 of diagonalisable sequences is almost-periodic.

∙ Words with 0 need more care (we have to apply Skolem’s theorem)

We want to decide: given, does accept 𝜎.

For this we need to be able to compute some things about 𝜎.
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(Weakly) effective 𝜎

Furthermore, (since T𝜆 is semialgebraic and ci, 𝜆i are algebraic) by manipulating
FO(ℝ, >, +, ⋅, 0, 1) formulas we can:

∙ decide whether a word w occurs infinitely often in 𝜎,
∙ if it does, compute a bound on the distance between consecutive
occurrences.

Define a subroutine:

inter𝜎 ∶ Σ∗ → {no} ∪ (Σ∗)

w ↦

{
no if w does not occur i.o. in 𝜎
{w1, … ,wk} otherwise

𝜎 = v w w3 w w1 w wk−1 ⋯
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Deciding 𝜔-regular properties

Theorem

The following problem is decidable:

INPUT: (deterministic and prefix-independent Müller automaton), inter𝜎
OUTPUT: Does accept 𝜎?
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Some suffix of 𝜎 is accepted by started in state q

implies

𝜎 is accepted by (because  is prefix-independent)
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Context

∙ For general lrs, complications are witnessed by the fact that 𝜎 for a
non-diagonalisable lrs is not necessarily almost-periodic
(a decision procedure for “+ i.o” can be used to compute Lagrange constants)

∙ This positive result was known for the formula “+ i.o”
(Ouaknine, Worrell 2014)

∙ Since a Markov chain is a lrs, it has some implications for logics
presented on: (Agrawal, Akshay, Genest, Thiagarajan 2015), (Beauquier, Rabinovich,

Slissenko, 2006)

whi l e ( t r u e ) :
x = 3 x+2y ;
y = −15 z ;
z = 2 x ;
i f ( 1 5 x^2−2x >3y ) a ++ ;
i f ( −2 z +12y <0 ) b ++ ;

Is an = O(bn)?
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Thank you


