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Goal: verify properties of (up)nen algorithmically
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Ideally we would like a procedure for:

INPUT: partition, q, M, A (Biichi automaton)
OUTPUT:1s ©® ®® ® ® - accepted by A?



WHAT WE PROVED?

THEOREM

There is a procedure for

diagonalisable  prefix-independent

INPUT: partition, q, M, A (Bichi automaton)
OUTPUT:]s 00 ® ® ® ® - accepted by A?
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WHERE ARE THE ZEROS?

(Un) neN 2 -1 0 8 —-12 0 24 -34
4 + + 0 =+ + 0 + +
What can we say about the word {?
THEOREM (SKOLEM-MAHLER-LECH)

{ is ultimately-periodic i.e:
g =W W(é)
* w; can be computed (Berstel and Mignotte 1976),

¢ computing w; has been open for a while,

* asymptotic behavior is simpler
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Is o ultimately-periodic as well?
counter-example

arg(4/5—3/51)
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MAIN OBSERVATION

LEMMA

The sign description o of diagonalisable sequences is almost-periodic.
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DEFINITION

An infinite word a € 2% is almost-periodic if for every word w € ¥*, there
exists p € IN such that either:

* w does not occur in « after position p, or

* w occurs in every factor of a of length p.

Synonyms: uniformly recurrent sequence, minimal sequence.
Examples: ultimately-periodic words, Sturmian words, Thue-Morse
Non-example: aba?ba’bab - .



WHAT IS SO DESIRABLE ABOUT ALMOST-PERIODIC WORDS?

THEOREM (SEMENOV 1984)

mso theory of (IN, >, P) is decidable when P is effectively almost-periodic.
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WHAT IS SO DESIRABLE ABOUT ALMOST-PERIODIC WORDS?

THEOREM (SEMENOV 1984)

mso theory of (N, >, P) is decidable when P is effectively almost-periodic.
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There is a procedure for:

INPUT: A (Buchi automaton)
OUTPUT:Is sseesccesseccssssessssse - accepted by A?



How DO WE PROVE THE MAIN LEMMA?

LEMMA

The sign description o of diagonalisable sequences is almost-periodic.
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1. Reduce to a much simpler linear recurrence sequence

2. Use a compactness argument to derive the bound
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How DO WE PROVE THE MAIN LEMMA?

LEMMA
The sign description o of diagonalisable sequences is almost-periodic
0 ©
First \ /n .
Up = 1Ay + -+ cg\y AL = [Ag] = - = |Ag]
Al + 4 AT + g Al + e+ g [Adl = = 1A > [Aray]
D(n) R(n)
cos(nf) + 27"

Not effective! reason for "prefix-independent
Proposition.
Ang Vn > ng [D(n)| > [R(n)|.

Proof. Using bounds on sums of S-units. p-adic subspace theorem

(Evertse 1984)(Van der Poorten & Schlickewei 1982)
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ALMOST-PERIODIC 0, PROOF

We have reduced to analysing the sign of
vn =Gl o+ AL (] =-=1Al=1)

(We have to show that the distance between consecutive positive indices is bounded)

{Q]...A) : neN}cT"

A
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There is a subset T < T" that is:
* compact,
= semialgebraic,

« can effectively be constructed, and

{(A,..,A") : neN}isdenseinT; - small over-approximation
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We have reduced to analysing the sign of

_ n n R _
vn =l + o E ey, (Al = =14l=1)
(We have to show that the distance between consecutive positive indices is bounded)

f :T)y->R (x1,...,x) > (c1x1, ..., & Xy)

T F1x x>0}

then vy, > 0 open

e

in two time-steps



ALMOST-PERIODIC 0, PROOF

We have reduced to analysing the sign of

v = Al + ot AL, (= =l=1)
(We have to show that the distance between consecutive positive indices is bounded)

f : T)->R (x1,...,x) > (c1x1, ..., & Xy)

T F1x x>0}

open

density = {A_"P cne ]N} is an open cover of T

compactness = admits a finite sub-cover
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MAIN LEMMA

LEMMA

The sign description o of diagonalisable sequences is almost-periodic.

* Words with 0 need more care (we have to apply Skolem’s theorem)

We want to decide: given A, does A accept o.

For this we need to be able to compute some things about o.



(WEAKLY) EFFECTIVE 0

Furthermore, (since T, is semialgebraic and ¢;, A; are algebraic) by manipulating
FO(R, >, +,-,0, 1) formulas we can:

¢ decide whether a word w occurs infinitely often in o,

¢ if it does, compute a bound on the distance between consecutive
occurrences.



(WEAKLY) EFFECTIVE 0

Furthermore, (since T, is semialgebraic and ¢;, A; are algebraic) by manipulating
FO(R, >, +,-,0, 1) formulas we can:

¢ decide whether a word w occurs infinitely often in o,

¢ if it does, compute a bound on the distance between consecutive
occurrences.

Define a subroutine:

inter, : X* > {no}uP(")

no if w does not occur i.o. in o
W =

{w1,..., wr} otherwise

O=VWW3sWW W Wj_1



DECIDING @w-REGULAR PROPERTIES

THEOREM

The following problem is decidable:

INPUT: A(deterministic and prefix-independent Miiller automaton), inter,
OUTPUT: Does A acceptc?



ALGORITHM

w:=a (for some g € X for which inter,(a) #no)
while(true):

{wq, ..., wr} :=intery(w)

. 3g € Q and w;, w; such that we see more states
if from g with ww; ww; than we do

from g with w I visit {g, q1} .
then o read w @
YT visit {q. q1. g2}

else read ww; ww;

break
{9. 91,92} > {q. 1}



ALGORITHM

@) Visit states Xo Q) Choose g := g; such that X := X;
read w

has minimal cardinality among
Xo, X1, s Xp

l visit states Xj l

read w return yes if and only if X is a final set of states
@ visit states X .
' read w '

@ visit states X .
. read w .
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ALGORITHM

@) Visit states Xo Q) Choose g := g; such that X := X;
read w has minimal cardinality among
X0, X15 005 X
@ visit states Xj . 0> k
- read w -
. visit states X . Correctness.
read w T=pWwWyWwg ww w -

(from the minimality)

return yes if and only if X is a final set of states

visit X visit Y7 visit X
) ()
<->;read w ~ read wy  read w O

visit states X

. read w .

XuY; =X

(cannot see more states)
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ALGORITHM

Some suffix of ¢ is accepted by A started in state g

implies

ois accepted by A (because A is prefix-independent)
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THEOREM

There is a procedure for diagonalisable prefix-independent

N

INPUT: semialgebraic partition, g, M, A (Biichi automaton)
OUTPUT:Is 00 @®® ® ® - accepted by A?

LRS are closed under component-wise product and addititon
(Presented 1 dimensional case only)



CONTEXT

* For general Lrs, complications are witnessed by the fact that o for a
non-diagonalisable LRs is not necessarily almost-periodic

(a decision procedure for “+ i.0” can be used to compute Lagrange constants)

* This positive result was known for the formula “+ i.0”
(Ouaknine, Worrell 2014)

* Since a Markov chain is a LRs, it has some implications for logics
presented on: (Agrawal, Akshay, Genest, Thiagarajan 2015), (Beauquier, Rabinovich,
Slissenko, 2006)



CONTEXT

* For general Lrs, complications are witnessed by the fact that o for a
non-diagonalisable LRs is not necessarily almost-periodic
(a decision procedure for “+ i.0” can be used to compute Lagrange constants)

* This positive result was known for the formula “+ i.0”
(Ouaknine, Worrell 2014)

¢ Since a Markov chain is a LRs, it has some implications for logics
presented on: (Agrawal, Akshay, Genest, Thiagarajan 2015), (Beauquier, Rabinovich,
Slissenko, 2006)

while (true):

X = 3x+2y;
y = -15z;
zZ = 2Xx;

if(15x"2-2x>3y) a++;
if(-2z+12y<0) b++;

Is a, = O(by)?



Thank you



