The Density of Positive Entries of a Linear Recurrence

Edon Kelmendi
Max Planck Institute for Software Systems
Saarbrücken, Germany

I. The Problem

II. The Theorems

III. The Example, or First Observation

IV. The Proof
V. The Open Problem

I. The Problem

$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4$
while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \longrightarrow \bullet$ arbitrary number of variables while true do ranging over integers
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

- $x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4$
while true do
$x \leftarrow 4 x+3 y$
- $y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$\triangleright z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$

- if $y+z>0$ then

Region A
else
Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
\rightarrow Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
\rightarrow Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
\rightarrow Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
\begin{aligned}
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region A } \\
& \text { else }
\end{aligned}
$$

- Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
\begin{aligned}
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } A \\
& \text { else }
\end{aligned}
$$

- Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

$$
\text { if } y+z>0 \text { then }
$$

Region A
else

Region B end if end while

Decision questions:

1. Is Region A reached?
(Is there at least one \square ?)

- Known as the positivity problem; at least as hard as Skolem's problem

2. Is Region A reached infinitely often?
(Are there infinitely many \square ?)

- Known as the ultimate positivity problem; also open \& difficult

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

$$
\text { if } y+z>0 \text { then }
$$

Region A
else
Region B end if end while

Decision questions:

1. Is Region A reached?
(Is there at least one \square ?)

- Known as the positivity problem; at least as hard as Skolem's problem

2. Is Region A reached infinitely often?
(Are there infinitely many \square ?)

- Known as the ultimate positivity problem; also open \& difficult

In this paper:

3. How much more frequent are \square compared to \square ?

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

$$
\text { if } y+z>0 \text { then }
$$

Region A
else
Region B
end if end while

Set of

1. Is it empty?
2. Is it infinite?
3. How big is it inside \mathbb{N} ?
4. Is Region A reached?
(Is there at least one \square ?)

- Known as the positivity problem; at least as hard as Skolem's problem

2. Is Region A reached infinitely often?
(Are there infinitely many ?)

- Known as the ultimate positivity problem; also open \& difficult

In this paper:

3. How much more frequent are \square compared to \square ?

Density

$S \subset \mathbb{N}$

$$
\mathcal{D}_{\circ}(S):=\liminf _{n \rightarrow \infty} \frac{|\{1,2, \ldots, n\} \cap S|}{n}
$$

What proportion of first n numbers are in $\mathrm{S}(n \rightarrow \infty)$?

Examples:

- $\mathcal{D}_{\circ}($ Finite Set $)=0, \quad \mathcal{D}_{\circ}($ co-Finite Set $)=1$
- $\mathcal{D}_{\circ}($ Arithmetic progression of length $k)=1 / k$,
- $\mathcal{D}_{\circ}($ Geometric progression $)=0$,
- $\mathcal{D}_{\circ}($ Primes $)=0$, (Prime Number Theorem).

Density

$S \subset \mathbb{N} \quad \mathcal{D}_{\circ}(S):=\liminf _{n \rightarrow \infty} \frac{|\{1,2, \ldots, n\} \cap S|}{n}$
What proportion of first n numbers are in $\mathrm{S}(n \rightarrow \infty)$?

$$
\begin{aligned}
& \mathcal{D}_{\circ}(X)=0 \Rightarrow X \text { is sparse } \\
& \mathcal{D}_{\circ}(X)=1 \Rightarrow X \text { is very dense }
\end{aligned}
$$

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A else

Number of \square in first n entries
$n \in \mathbb{N}$
Region B end if end while
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4$ while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

if $y+z>0$ then
Region A
else
Region B end if end while

Number of \square in first n entries

\lim

Exists due to:

Jason P Bell and Stefan Gerhold. On the positivity set of a linear recurrence sequence. Israel fournal of Mathematics, 157(1):333-345, 2007.

Denote it by \mathcal{D}. Main character of the story

II. The Theorems

Theorems

Theorem 1." $\mathcal{D}=0$? " is decidable.
(so is " $\mathcal{D}=1$? " by symmetry)
Theorem 1a. For diagonalisable update matrices:
$\mathcal{D}=0 \Leftrightarrow$ finitely many

Theorems

Theorem 1. " $\mathcal{D}=0$? " is decidable. (so is " $\mathcal{D}=1$? " by symmetry)
Theorem 1a. For diagonalisable update matrices:
$\mathcal{D}=0 \Leftrightarrow$ finitely many \square

Theorems

Theorem 1. " $\mathcal{D}=0$? " is decidable.
(so is " $\mathcal{D}=1$? " by symmetry)
Theorem 1a. For diagonalisable update matrices:

$$
\mathcal{D}=0 \Leftrightarrow \text { finitely many } \square
$$

Theorem 2. \mathcal{D} can be computed to arbitrary precision.

Theorems

Theorem 1. " $\mathcal{D}=0$? " is decidable.
(so is " $\mathcal{D}=1$? " by symmetry)
Theorem 1a. For diagonalisable update matrices:

$$
\mathcal{D}=0 \Leftrightarrow \text { finitely many }
$$

Theorem 2. \mathcal{D} can be computed to arbitrary precision.
Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4$
while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while

To Summarise:

- We can decide if Region A is entered not too rarely
- We can say a lot about the asymptotic frequency of entering Region $A /$ Region B

|II. The Example, or First Observation

```
x\leftarrow0;y\leftarrow6;z\leftarrow4
while true do
    x\leftarrow4x+3y
    y\leftarrow4y-3x
    z\leftarrow5z
    if }y+z>0\mathrm{ then
        Region A
    else
        Region B
    end if
end while
```

```
x\leftarrow0;y\leftarrow6;z\leftarrow4
while true do
    x\leftarrow4x+3y
    y\leftarrow4y-3x
    z\leftarrow5z
    if }y+z>0\mathrm{ then
        Region A
    else
        Region B
    end if
end while
```

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

$$
\text { if } y+z>0 \text { then }
$$ Region A else

Region B end if
 end while

```
x\leftarrow0;y\leftarrow6;z\leftarrow4
while true do
    x\leftarrow4x+3y
    y\leftarrow4y-3x
    z\leftarrow5z
    if }y+z>0\mathrm{ then
        Region A
    else
        Region B
    end if
end while
if \(y+z>0\) then Region A else
Region B
end if end while
```

$$
5^{n}\left(\begin{array}{ccc}
4 / 5 & -3 / 5 & 0 \\
3 / 5 & 4 / 5 & 0 \\
0 & 0 & 1
\end{array}\right)^{n}
$$

$$
\begin{aligned}
r(\cos \theta, \sin \theta) \cdot\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) & =r(\cos \theta \cos \varphi-\sin \theta \sin \varphi, \cos \theta \sin \varphi+\sin \theta \cos \varphi) \\
& =r(\cos (\theta+\varphi), \sin (\theta+\varphi))
\end{aligned}
$$

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then Region A
else
Region B
end if end while

$5^{n}\left(\begin{array}{ccc}4 / 5 & -3 / 5 & 0 \\ 3 / 5 & 4 / 5 & 0 \\ 0 & 0 & 1\end{array}\right)^{n}=5^{n}\left(\begin{array}{ccc}\cos n \varphi & -\sin n \varphi & 0 \\ \sin n \varphi & \cos n \varphi & 0 \\ 0 & 0 & 1\end{array}\right)$

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } A \\
& \text { else } \\
& \text { Region } B \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } \mathrm{A} \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } \mathrm{A} \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } \mathrm{A} \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } A \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

$$
\varphi=\cos ^{-1} 4 / 5
$$

How frequently are we on the red arc?

$$
\varphi=\cos ^{-1} 4 / 5
$$

How frequently are we on the red arc?

Theorem (Weyl, 1910). Let ρ be an irrational real number. Then the sequence:

$$
\rho, 2 \rho, 3 \rho, \ldots
$$

is uniformly distributed mod 1 .

$$
\varphi=\cos ^{-1} 4 / 5
$$

How frequently are we on the red arc?

Theorem (Weyl, 1910). Let ρ be an irrational real number. Then the sequence:

$$
\rho, 2 \rho, 3 \rho, \ldots
$$

is uniformly distributed mod 1 .

$$
\mathcal{D}=\frac{\text { length of }-}{2 \pi}=\frac{\cos ^{-1}(-2 / 3)}{\pi}=0.732278 \ldots
$$

Scheme

Scheme

\(\underbrace{\substack{

\left(\begin{array}{ccc}4 \& -3 \& 0

3 \& 4 \& 0

0 \& 0 \& 1\end{array}\right)^{n}}}_{Update Matrix}\)| Conserve sign information |
| :--- |

Scheme

A stronger version of Weyl's theorem $+$
Koiran's approximation of volumes of definable sets
IV. The Proof

Linear Recurrence Sequences

Theorem (Cayley-Hamilton). $\mathrm{f}(\mathrm{M})=\mathbf{0}$
matrix

Linear Recurrence Sequences

Theorem (Cayley-Hamilton). $f(M)=\mathbf{0}$
matrix

$$
2 M^{3}-4 M^{2}+M+5 I=\mathbf{0}
$$

Linear Recurrence Sequences

Theorem (Cayley-Hamilton). $f(M)=0$
matrix

$$
2 M^{n+3}-4 M^{n+2}+M^{n+1}+5 M^{n}=\mathbf{0}
$$

Linear Recurrence Sequences

characteristic polynomial of M
Theorem (Cayley-Hamilton). $\mathrm{f}(\mathrm{M})=\mathbf{0}$

$$
\begin{gathered}
2 M^{n+3}-4 M^{n+2}+M^{n+1}+5 M^{n}=\mathbf{0} \\
u_{n}:=\left(M^{n}\right)_{i, j} \\
2 u_{n+3}-4 u_{n+2}+u_{n+1}+5 u_{n}=0 \\
\text { Entries of } M^{n} \text { are LRS. }
\end{gathered}
$$

We are interested in the density of $\left\{n: u_{n}>0\right\}$

Linear Recurrence Sequences

By Jordan decomposition

Linear Recurrence Sequences

By Jordan decomposition

$$
\mathcal{D}:=\text { density of }\left\{n: u_{n}>0\right\}
$$

Preprocessing

Split the problem: $\left(u_{n T+l}\right)_{n \in \mathbb{N}}$,

$$
l \in\{0,1, \ldots, T-1\}
$$

where the smaller problems (i.e. subsequences)
have some good properties

Preprocessing

To understand the good property of the subsequences, note:

$$
u_{n}=\sum_{i=1}^{d} P_{i}(n) \lambda_{i}^{n}
$$

sometimes there may be multiplicative relations among λ : integers z_{1}, \ldots, z_{d} such that:

$$
\lambda_{1}^{z_{1}} \lambda_{2}^{z_{2}} \cdots \lambda_{d}^{z_{d}}=1
$$

so e.g. $\lambda_{d}^{z_{d}}$ can be written as a product of integer powers of other roots

In the subsequences all the dependencies are gathered

Preprocessing

Good property: the subsequences have the same sign as

$$
\underbrace{\sum_{i \in I} c_{i} \alpha_{i}^{n}}_{\text {independent }}+\underbrace{\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}}_{\text {dependent }}+c+\underbrace{R(n)}_{\text {remainder tends to zero }}, \quad n \in \mathbb{N}
$$

- $\alpha_{i} \in \overline{\mathbb{Q}}, \quad\left|\alpha_{i}\right|=1$
- $c_{i} \in \overline{\mathbb{Q}}$
- $q_{i, j} \in \mathbb{Q}$

Furthermore, the group

$$
\{\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}^{k}: \underbrace{\alpha_{1}^{z_{1}} \alpha_{2}^{z_{2}} \cdots \alpha_{k}^{z_{k}}}_{\text {independent }}=1\}=\{\mathbf{0}\}
$$ is trivial.

Rotations

$$
\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} \quad\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N}
$$

$\left\{\theta_{1}, \ldots, \theta_{k}, 1\right\}$ are linearly independent over \mathbb{Q}

Rotations

$$
\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} \quad\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N}
$$

$$
\left\{\theta_{1}, \ldots, \theta_{k}, 1\right\}
$$ are linearly

independent over \mathbb{Q}
E.g. for $\mathrm{k}=2$

Rotations

$$
\begin{aligned}
& \alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} \\
& \left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \\
& \begin{array}{l}
1 \\
\begin{array}{|l|}
\hline \\
\\
\\
\hline \\
0
\end{array} \\
\\
\hline
\end{array}
\end{aligned}
$$

Rotations

$$
\begin{array}{cc}
\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} & \left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \\
x_{i}+\theta_{i} \quad \bmod 1 & 1 \\
& \\
0
\end{array}
$$

Rotations

$$
\begin{array}{cc}
\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} & \left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \\
x_{i}+\theta_{i} \quad \bmod \perp & 1 \\
0
\end{array}
$$

Rotations

$$
\begin{array}{cc}
\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} & \left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \\
x_{i}+\theta_{i} \quad \bmod \perp & 1 \\
0
\end{array}
$$

Rotations

$$
\begin{array}{cc}
\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} & \left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \\
x_{i}+\theta_{i} \quad \bmod \perp & 1
\end{array}
$$

Rotations

$$
\begin{array}{cc}
\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} & \left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \\
x_{i}+\theta_{i} \quad \bmod 1 & 1
\end{array}
$$

Rotations

$\alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}}$
 $\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N}$
 are linearly
 independent over \mathbb{Q}
 $\left\{\theta_{1}, \ldots, \theta_{k}, 1\right\}$
 Theorem (Kronecker).
 $\left(n \theta_{1} \bmod 1,, \ldots, n \theta_{k} \bmod 1\right), n \in \mathbb{N}$ is dense in the hypercube

Rotations

$$
\begin{aligned}
& \alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} \quad\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \begin{array}{c}
\begin{array}{c}
\text { are linearly } \\
\text { independent over } \mathbb{Q}
\end{array} \\
x_{i}+\theta_{i} \bmod 1
\end{array} \begin{array}{l}
\text { Theorem (Weyl, 1912). }
\end{array} \\
& \left(n \theta_{1} \bmod 1, \ldots, n \theta_{k} \bmod 1\right), n \in \mathbb{N} \\
& \text { is equidistributed in the } \\
& \text { hypercube }
\end{aligned}
$$

The amount of time spent in X is proportional to $\operatorname{vol}(\mathrm{X})$

Rotations

$$
\begin{aligned}
& \alpha_{i}=e^{2 \pi \mathbf{i} \theta_{i}} \quad\left(\alpha_{1}^{n}, \alpha_{2}^{n}, \ldots, \alpha_{k}^{n}\right), \quad n \in \mathbb{N} \begin{array}{c}
\left\{\theta_{1}, \ldots, \theta_{k}, 1\right\} \\
\text { are linearly } \\
\text { independent over } \mathbb{Q}
\end{array} \\
& x_{i}+\theta_{i} \text { mod } 1 \underbrace{}_{0} \begin{array}{l}
\text { Theorem (Weyl, 1912). } \\
\left(n \theta_{1} \bmod 1,, \ldots, n \theta_{k} \bmod 1\right), n \in \mathbb{N} \\
\text { is equidistributed in the } \\
\text { hypercube }
\end{array}
\end{aligned}
$$

The amount of time spent in X is proportional to $\operatorname{vol}(\mathrm{X})$
Density of $\left\{n:\left(n \theta_{1} \bmod 1, \ldots, n \theta_{k} \bmod 1\right) \in X\right\}=\operatorname{vol}(X)$

$$
\frac{\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c}{D(n)}+R(n), \quad n \in \mathbb{N}
$$

$$
\frac{\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c}{D(n)}+R(n), \quad n \in \mathbb{N}
$$

Density of $\{n: D(n)>0\}=\operatorname{vol}(U)$

Here $D(\bullet)>0$

$$
\frac{\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c}{D(n)}+R(n), \quad n \in \mathbb{N}
$$

$$
\begin{aligned}
& \text { Density of }\{n: D(n)>0\}=\operatorname{vol}(U) \\
& \qquad \operatorname{vol}(U)>0 \Leftrightarrow \underbrace{U \neq \emptyset}_{\begin{array}{l}
\text { An equivalent statement can } \\
\text { be decided with FO of reals }
\end{array}}
\end{aligned}
$$

$$
\underbrace{\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c}_{D(n)}+R(n), \quad n \in \mathbb{N}
$$

We need: Density of $\{n: D(n)+R(n)>0\}$

$$
\underbrace{\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c}_{D(n)}+R(n), \quad n \in \mathbb{N}
$$

We need: Density of $\{n: D(n)+R(n)>0\}$

$$
\text { When is }|D(n)|<|R(n)| ?
$$

Difficult problem: Depends on diophantine properties of α (Main obstruction to decidability of Skolem, Positivity, etc.)

$$
\underbrace{\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c}_{D(n)}+R(n), \quad n \in \mathbb{N}
$$

We need: Density of $\{n: D(n)+R(n)>0\}$

$$
\text { When is }|D(n)|<|R(n)| ?
$$

Difficult problem: Depends on diophantine properties of α (Main obstruction to decidability of Skolem, Positivity, etc.)

$$
\text { Density of }\{n:|D(n)|<|R(n)|\}=0
$$

When is $|D(n)|<|R(n)|$?

Density of $\{n:|D(n)|<|R(n)|\}=0$

- Density of $\{n: D(n)=0\}=0$ due to Skolem-Mahler-Lech
- $\lim _{n \rightarrow \infty}|R(n)|=0$ polynomially fast

When is $|D(n)|<|R(n)|$?

Density of $\{n:|D(n)|<|R(n)|\}=0$

- Density of $\{n: D(n)=0\}=0$ due to Skolem-Mahler-Lech
- $\lim _{n \rightarrow \infty}|R(n)|=0$ polynomially fast

Theorem 1. " $\mathcal{D}=0$? " is decidable. (so is " $\mathcal{D}=1$? " by symmetry)

Diagonalisable Matrices

When M is diagonalisable:
$\lim _{n \rightarrow \infty}|R(n)|=0$ exponentially fast

$$
\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c+R(n), \quad n \in \mathbb{N}
$$

In this case, the p -adic subspace theorem implies:
there is some N, such that for all $n>N$

$$
|\mathrm{D}(\mathrm{n})|>|\mathrm{R}(\mathrm{n})| .
$$

$$
\begin{aligned}
& \mathrm{D}(\mathrm{n})+\mathrm{R}(\mathrm{n})>0 \text { for infinitely many } \mathrm{n} \\
& \quad \text { if and only if } \\
& \mathrm{D}(\mathrm{n})>0 \text { for infinitely many } \mathrm{n}
\end{aligned}
$$

Diagonalisable Matrices

When M is diagonalisable:
$\lim _{n \rightarrow \infty}|R(n)|=0$ exponentially fast

$$
\sum_{i \in I} c_{i} \alpha_{i}^{n}+\sum_{i \in D} c_{i} \prod_{j \in I} \alpha_{j}^{q_{i, j}}+c+R(n), \quad n \in \mathbb{N}
$$

$$
D(n)
$$

In this case, the p -adic subspace theorem implies:
there is some N , such that for all $\mathrm{n}>\mathrm{N}$ $|D(n)|>|R(n)|$.
$\mathrm{D}(\mathrm{n})+\mathrm{R}(\mathrm{n})>0$ for infinitely many n if and only if
$\mathrm{D}(\mathrm{n})>0$ for infinitely many n

Theorem 1a does not hold for nondiagonalisable matrices.

Theorem 1a. For diagonalisable update matrices: $\mathcal{D}=0 \Leftrightarrow$ finitely many

Approximating the Density

can be even transcendental
Density of $\{n: D(n)>0\}=\operatorname{vol}(U)$

Approximating the Density

How to approximate the volume of U ?

Approximating the Density

How to approximate the volume of U ?

Approximate volume II number of number of •

Approximating the Density

How to approximate the volume of U ?

1.How to make a grid such that $\bullet \in U$ can be decided
2. How fine should the grid be for \mid approx $-\operatorname{vol} \mid<\varepsilon$?

Pascal Koiran:
Approximating the Volume of Definable Sets. FOCS 1995: 134-141
Approximating the Volume of Definable Sets. FOCS 1995:134-141

1

0

II number of number of -

Approximating the Density

1.How to make a grid such that $\bullet \in U$ can be decided
2. How fine should the grid be for \mid approx - vol $\mid<\varepsilon$?

1

0
1

Approximate volume II number of number of

Theorem 2. \mathcal{D} can be computed to arbitrary precision.

Complexity

- < PSPACE
- when number of variables (order of LRS) is fixed, $<$ PTIME - > co-NP

V. The Open Problem

Decide whether

Can be rational, algebraic, or transcendental

Decide whether

$$
\mathcal{D}>\frac{1}{2}
$$

If $\mathcal{D} \notin \mathbb{Q}$ we can use the approximation algorithm

Can be rational, algebraic, or transcendental

If $\mathcal{D} \in \mathbb{Q}$ then we can probably compute it directly

Can we decide whether $\mathcal{D} \in \mathbb{Q}$?

Decide whether $\mathcal{D} \in \mathbb{Q}$

When there are no multiplicative relations:
Decide if $\int_{\mathcal{C}_{i=1}} \prod_{i=1}^{\eta} \frac{1}{\sqrt{1-x_{i}^{2}}} d \vec{x} \in \mathbb{Q} \pi^{\eta}$

Decide whether $\mathcal{D} \in \mathbb{Q}$

When there are at most three dominant eigenvalues, the problem reduces to:

Given $\alpha \in \overline{\mathbb{Q}}$, decide whether $\cos ^{-1}(\alpha) \in \mathbb{Q} \pi$

$$
\mathbb{N}
$$

$$
\begin{aligned}
& T_{n}(\cos \theta)=\cos (n \theta) \\
& \text { for some } \mathrm{n}, \text { a is a root of } \\
& T_{n}(x)-1 \quad \text { or } \quad T_{n}(x)+1
\end{aligned}
$$

Decide whether $\mathcal{D} \in \mathbb{Q}$

When there are at most three dominant eigenvalues, the problem reduces to:

Given $\alpha \in \overline{\mathbb{Q}}$, decide whether $\cos ^{-1}(\alpha) \in \mathbb{Q} \pi$

$$
\mathbb{I}
$$

$$
\begin{aligned}
& T_{n}(\cos \theta)=\cos (n \theta) \\
& \text { for some } \mathrm{n}, \mathrm{a} \text { is a root of } \\
& T_{n}(x)-1 \quad \text { or } \quad T_{n}(x)+1
\end{aligned}
$$

Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.

Thank You

I. The Problem

$\begin{aligned} & x \leftarrow 0 ; y \leftarrow 6 ; z \\ & \text { while true do } \end{aligned}$$x \leftarrow 4 x+3 y$	
$\begin{aligned} & y \leftarrow 4 y-3 x \\ & z \leftarrow 5 z \end{aligned}$	Decision questions:
if $y+z>0$ then	1. Is Region A reached? (Is there at least one \square ?)
Region A	
$\underset{\text { Region B }}{ }$	- Known as the positivity problem; at least as hard as Skolem's problem
end if	
end while	2. Is Region A reached infinitely often?
Set of 1. Is it empty?	- Known as the ultimate positivity problem; also open \& difficult
2. Is it infinite?	In this paper:
3. How big is it inside \mathbb{N} ?	3. How much more frequent are \square compared to \square ?

II. The Theorems

Theorems
Theorem 1. " $\mathcal{D}=0$?" is decidable.
(so is " $\mathcal{D}=1$? " by symmetry)
Theorem 1a. For diagonalisable update matrices:

$$
\mathcal{D}=0 \Leftrightarrow \text { finitely many } \square
$$

Theorem 2. \mathcal{D} can be computed to arbitrary precision
Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable,
when there are at most three dominant eigenvalues.

III. The Example, or First Observation

$\varphi=\cos ^{-1} 4 / 5$

Theorem (Weyl, 1910). Let ρ be an irrational real number. Then the sequence:
$\rho, 2 \rho, 3 \rho$,
is uniformly distributed mod
$\mathcal{D}=\frac{\text { length of }-}{2 \pi}=\frac{\cos ^{-1}(-2 / 3)}{\pi}=0.732278$

IV. The Proof

Approximating the Density

Theorem 2. \mathcal{D} can be computed to arbitrary precision.

V. The Open Problem
Decide whether $\mathcal{D} \in \mathbb{Q}$

When there are no multiplicative relations:

Decide if $\quad \int_{\mathcal{C}} \prod_{i=1}^{\eta} \frac{1}{\sqrt{1-x_{i}^{2}}} d \vec{x} \quad \in \mathbb{Q} \pi^{\eta}$

