The Density of Positive Entries of a Linear Recurrence

Max Planck Institute for Software Systems Saarbrücken, Germany

Edon Kelmendi

I. The Problem **II. The Theorems** III. The Example, or First Observation

IV. The Proof

V. The Open Problem

I. The Problem

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else **Region** B end if end while

arbitrary number of variables ranging over integers

• linear updates

polynomial inequality

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $\triangleright x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else **Region** B end if end while

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ \triangleright $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else **Region** B end if end while

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $\triangleright z \leftarrow 5z$ if y + z > 0 then Region A else **Region B** end if end while

$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ $\blacktriangleright \text{ if } y + z > 0 \text{ then}$ Region A else **Region B** end if end while

Decision questions: 1. Is Region A reached?

- (Is there at least one ?)

2. Is Region A reached infinitely often? (Are there infinitely many ?)

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do

> $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if

end while

Decision questions:

- 1. Is Region A reached?
 - (Is there at least one ?)
 - Known as the **positivity problem**; at least as hard as Skolem's problem
- 2. Is Region A reached infinitely often?
 - (Are there infinitely many ?)
 - Known as the ultimate positivity problem; also open & difficult

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do

 $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if end while

Decision questions:

- 1. Is Region A reached?
 - (Is there at least one ?)
 - Known as the **positivity problem**; at least as hard as Skolem's problem
- 2. Is Region A reached infinitely often?
 - (Are there infinitely many ?)
 - Known as the ultimate positivity problem; also open & difficult
- In this paper:

3. How much more frequent are compared to ?

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do

 $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if end while

Set of

- 1. Is it empty? 2. Is it infinite?
- 3. How big is it inside \mathbb{N} ?

Decision questions:

- 1. Is Region A reached?
 - (Is there at least one ?)
 - Known as the **positivity problem**; at least as hard as Skolem's problem
- 2. Is Region A reached infinitely often?
 - (Are there infinitely many ?)
 - Known as the ultimate positivity problem; also open & difficult
- In this paper:

3. How much more frequent are compared to ?

 $\mathcal{D}_{\circ}(S):=\liminf_{n
ightarrow\infty}rac{|\{1,2,\ldots,n\}\cap S|}{n}$ $S \subset \mathbb{N}$

What proportion of first n numbers are in S ($n \rightarrow \infty$)?

Examples:

- $\mathcal{D}_{\circ}($ Finite Set)=0 ,
- $\mathcal{D}_{\circ}(\operatorname{Arithmetic} \operatorname{progression} \operatorname{of} \operatorname{length} k) = 1/k$.
- $\mathcal{D}_{\circ}(\text{Geometric progression}) = 0$,
- $\mathcal{D}_{\circ}(\text{Primes}) = 0$, (Prime Number Theorem).

Density

$\mathcal{D}_{\circ}(\text{ co-Finite Set}) = 1$

$n \rightarrow \infty$

 $S \subset \mathbb{N}$

What proportion of first n numbers are in S ($n \rightarrow \infty$)?

$\operatorname{if} \mathcal{D}_{\circ}(X) = \mathcal{D}^{\circ}(X), ext{ denote by } \mathcal{D}(X)$

Density

 $\mathcal{D}_{\circ}(S):=\liminfrac{|\{1,2,\ldots,n\}\cap S|}{}$ \boldsymbol{n}

$\mathcal{D}_{\circ}(X) = 0 \Rightarrow X \text{ is sparse}$ $\mathcal{D}_{\circ}(X) = 1 \Rightarrow X \text{ is very dense}$

Number of \square in first n entries

 $n \in \mathbb{N}$

 $\boldsymbol{\mathcal{N}}$

Jason P Bell and Stefan Gerhold. On the positivity set of a linear recurrence sequence. Israel Journal of Mathematics, 157(1):333-345, 2007.

Number of in first *n* entries

$\boldsymbol{\mathcal{N}}$

Exists due to:

Denote it by \mathcal{D} . Main character of the story

II. The Theorems

Theorem 1. " $\mathcal{D} = 0$?" is decidable. (so is " $\mathcal{D} = 1$?" by symmetry) **Theorem 1a.** For diagonalisable update matrices: $\mathcal{D} = 0 \Leftrightarrow \text{finitely many}$

Theorem 2. D can be computed to arbitrary precision.

Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.

Theorem 1. " $\mathcal{D} = 0$?" is decidable. (so is " $\mathcal{D} = 1$?" by symmetry)

Theorem 1a. For diagonalisable update matrices: $\mathcal{D} = 0 \Leftrightarrow \text{finitely many}$

Theorem 2. D can be computed to arbitrary precision.

Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.

- Theorem 1. " $\mathcal{D} = 0$? " is decidable. (so is " $\mathcal{D} = 1$?" by symmetry)
- Theorem 1a. For diagonalisable update matrices: $\mathcal{D} = 0 \Leftrightarrow \text{finitely many}$
- Theorem 2. \mathcal{D} can be computed to arbitrary precision.
- Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.

- Theorem 1. " $\mathcal{D} = 0$? " is decidable. (so is " $\mathcal{D} = 1$?" by symmetry)
- Theorem 1a. For diagonalisable update matrices: $\mathcal{D} = 0 \Leftrightarrow \text{finitely many}$
- Theorem 2. \mathcal{D} can be computed to arbitrary precision.
- Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.

too rarely

To Summarise:

• We can decide if Region A is entered not

• We can say a lot about the asymptotic frequency of entering Region A/Region B

III. The Example, or First Observation

How frequently is Region A entered?

How frequently is Region A entered?

$0.732279\dots = rac{\cos^{-1}(-2/3)}{}$ π

y+z in the nth loop iteration

$$\begin{array}{ccc} 4/5 & -3/5 & 0 \\ 3/5 & 4/5 & 0 \\ 0 & 0 & 1 \end{array}^n$$

D rotation

$$r(\cos heta,\sin heta)\cdotigg(egin{array}{ccc} \cosarphi & \sinarphi \ -\sinarphi & \cosarphi \ \end{array} igg) = r(\cosarphi) = r(\cosarphi) = r(\cosarphi)$$

 $egin{aligned} & \sin heta \cos arphi + \sin heta \cos arphi) \ & \cos(heta + arphi), \sin(heta + arphi)) \end{aligned}$

Rotation in the first two coordinates by $\varphi = \cos^{-1} 4/5$

$$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$$

while true do
$$x \leftarrow 4x + 3y$$
$$y \leftarrow 4y - 3x$$
$$z \leftarrow 5z$$
if $y + z > 0$ then
Region A
else
Region B
end if
end while

How frequently are we on the red arc?

How frequently are we on the red arc?

Theorem (Weyl, 1910). Let ρ be an irrational real number. Then the sequence: ρ , 2 ρ , 3 ρ , ... is uniformly distributed mod 1.

How frequently are we on the red arc?

Theorem (Weyl, 1910). Let ρ be an irrational real number. Then the sequence: ρ , 2 ρ , 3 ρ , ... is uniformly distributed mod 1.

$$\frac{\text{h of }}{2\pi} = \frac{\cos^{-1}(-2/3)}{\pi} = 0.732278$$

Update Matrix

Scheme

Rotations on the circle

Weyl's equidistribution

Scheme

?

Rotations on the circle

Weyl's equidistribution

?

Scheme

Rotations on the circle

Weyl's equidistribution

Rotations on a subgroup of \mathbb{T}^n

A stronger version of Weyl's theorem + Koiran's approximation of volumes of definable sets

IV. The Proof

By Jordan decomposition

By Jordan decomposition

 $\mathcal{D} := ext{density of } \{n : u_n > 0\}$

 \frown positivity set of $(u_n)_{n\in\mathbb{N}}$

$l \in \{0, 1, \ldots, T-1\}$ Split the problem: $(u_{nT+l})_{n \in \mathbb{N}}$,

where the smaller problems (i.e. subsequences) have some good properties

Preprocessing

- compute some large period T

Preprocessing

- sometimes there may be multiplicative relations among λ : integers z_1, \ldots, z_d such that:

In the subsequences all the dependencies are gathered

To understand the good property of the subsequences, note: $u_n = \sum_{i=1}^d P_i(n) \;\; \lambda_i^n$

 $\lambda_1^{z_1}\lambda_2^{z_2}\cdots\lambda_d^{z_d}=1$

so e.g. $\lambda_d^{z_d}$ can be written as a product of integer powers of other roots

Good property: the subsequences have the same sign as

- $lpha_i\in ar{\mathbb{Q}}, \ |lpha_i|=1$
- $c_i \in \mathbb{Q}$
- $q_{i,j} \in \mathbb{Q}$

Furthermore, the group

$$ig\{(z_1,\ldots,z_k)\in\mathbb{Z}^k\ :\ lpha_1^{z_1}lpha_2^{z_2}\cdotslpha_k^{z_k}=1ig\}=ig\{$$
independent

is trivial.

 $lpha_i=e^{2\pi {f i}\, heta_i}$

 $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$

 $lpha_i=e^{2\pi {f i}\, heta_i}$

E.g. for k=2

Rotations

 $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$

 $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$

 $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$

 $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$

 $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$

 $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$

 $\{ heta_1,\ldots, heta_k,1\}$ $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$ are linearly independent over Q

> Theorem (Kronecker). $(n\theta_1 \mod 1, \ldots, n\theta_k \mod 1), n \in \mathbb{N}$ is dense in the hypercube

The amount of time spent in X is proportional to vol(X)

Rotations

 $\{ heta_1,\ldots, heta_k,1\}$ $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$ are linearly independent over Q

> **Theorem** (Weyl, 1912). $(n\theta_1 \mod 1, \ldots, n\theta_k \mod 1), n \in \mathbb{N}$ is equidistributed in the hypercube

The amount of time spent in X is proportional to vol(X)

Density of $\{n : (n\theta_1 \mod 1, \ldots, n\theta_k \mod 1) \in X\} = vol(X)$

Rotations

 $\{ heta_1,\ldots, heta_k,1\}$ $(lpha_1^n, lpha_2^n, \dots, lpha_k^n), \quad n \in \mathbb{N}$ are linearly independent over Q

> **Theorem** (Weyl, 1912). $(n\theta_1 \mod 1, \ldots, n\theta_k \mod 1), n \in \mathbb{N}$ is equidistributed in the hypercube

 $\sum c_i lpha_i^n + \sum c_i \prod lpha_j^{q_{i,j}} + c + R(n),$ $n\in\mathbb{N}$ $i{\in}D$ $j{\in}I$ $i \in I$

 $\operatorname{vol}(U) > 0 \iff U \neq \emptyset$

Density of $\{n : D(n) > 0\} = \operatorname{vol}(U)$

An equivalent statement can be decided with Tarski's algo

 $\sum c_i lpha_i^n + \sum c_i \prod lpha_j^{q_{i,j}} + c + R(n), \qquad n \in \mathbb{N}$ $i{\in}D$ $j \in I$ $i \in I$

so we can decide if the density of the positivity set of D(n) is nonzero

Density of $\{n : D(n) > 0\} = \operatorname{vol}(U)$

$\operatorname{vol}(U) > 0 \iff U \neq \emptyset$

An equivalent statement can be decided with FO of reals

 $\sum_{i=1}^{n}c_ilpha_i^n+\sum_{i=1}^{n}c_i\prod_{j=1}^{n}lpha_j^{q_{i,j}}+c+R(n),\qquad n\in\mathbb{N}$ $\overline{i{\in}I}$ $i{\in}D$ $j{\in}I$

We need: Density of $\{n : D(n) + R(n) > 0\}$
$\sum c_i lpha_i^n + \sum c_i \prod lpha_j^{q_{i,j}} + c + R(n), \qquad n \in \mathbb{N}$ $i{\in}D$ $j{\in}I$ $i \in I$

D(n)

We need: Density of $\{$ When is |D(r)|

Difficult problem: Depends on diophantine properties of α (Main obstruction to decidability of Skolem, Positivity, etc.)

$$\{n : D(n) + R(n) > 0\}$$

 $i)| < |R(n)|?$

 $\sum c_i lpha_i^n + \sum c_i \prod lpha_j^{q_{i,j}} + c + R(n), \qquad n \in \mathbb{N}$ $i{\in}D$ $j{\in}I$ $i \in I$

D(n)

We need: Density of $\{$ When is |D(r)|

Difficult problem: Depends on diophantine properties of α (Main obstruction to decidability of Skolem, Positivity, etc.)

Density of $\{n : |$

$$\{n : D(n) + R(n) > 0\}$$

 $i)| < |R(n)|?$

$$D(n)|<|R(n)|\}=0$$

When is |D(n)| < |R(n)|?

Density of $\{n : | I\}$

- Density of $\{n:$ due to Skolem-
- $\lim_{n \to \infty} |R(n)| = 0$ polynomially fast

$$D(n)|<|R(n)|\}=0$$

$$D(n) = 0$$
 = 0
Mahler-Lech

When is |D(n)| < |R(n)|?

Density of $\{n : | I\}$

- Density of $\{n:$ due to Skolem-
- $ullet \ \lim_{n o\infty} |R(n)| = 0$

Theorem 1. " \mathcal{D} (so is " $\mathcal{D} = 1$?" by sy

$$D(n)| < |R(n)|\} = 0$$

$$D(n) = 0$$
 = 0
Mahler-Lech

Diagonalisable Matrices

When M is diagonalisable: $\lim_{n \to \infty} |R(n)| = 0$ exponentially fast

In this case, the p-adic subspace theorem implies:

— not effective

there is some N, such that for all n > N|D(n)| > |R(n)|.

D(n)+R(n)>0 for infinitely many n if and only if D(n)>0 for infinitely many n

 $\sum_{i\in I}c_ilpha_i^n+\sum_{i\in D}c_i\prod_{j\in I}lpha_j^{q_{i,j}}+c+R(n),$ D(n)

Diagonalisable Matrices

When M is diagonalisable: $\lim_{n \to \infty} |R(n)| = 0$ exponentially fast

In this case, the p-adic subspace theorem implies: not effective

there is some N, such that for all n > N|D(n)| > |R(n)|.

D(n)+R(n)>0 for infinitely many n if and only if D(n) > 0 for infinitely many n

 $\sum_{i\in I}c_ilpha_i^n+\sum_{i\in D}c_i\prod_{j\in I}lpha_j^{q_{i,j}}+c+R(n),$ D(n)

Theorem 1a does not hold for nondiagonalisable matrices.

Joël Ouaknine 💿, James Worrell 💿: Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences. ICALP (2) 2014: 330-341

Theorem 1a. For diagonalisable update matrices: $\mathcal{D} = 0 \Leftrightarrow \text{finitely many} \blacksquare$

open 0 Here $D(\bullet) > 0$

can be even transcendental

Density of $\{n : D(n) > 0\} = \operatorname{vol}(U)$

How to approximate the volume of U?

How to approximate the volume of U?

Approximate volume number of • number of •

How to approximate the volume of U?

1.How to make a grid such that $\bullet \in U$ can be decided

2. How fine should the grid be for $|approx - vol| < \epsilon$?

Pascal Koiran: Approximating the Volume of Definable Sets. FOCS 1995: 134-141

Approximate volume number of • number of •

1.How to make a grid such that $\bullet \in U$ can be decided

2. How fine should the grid be for $|approx - vol| < \epsilon$?

Pascal Koiran: Approximating the Volume of Definable Sets. FOCS 1995: 134-141

there is also a Monte-Carlo type algorithm

Theorem 2. \mathcal{D} can be computed to arbitrary precision.

Approximate volume number of • number of •

< PSPACE when number of variables (order of LRS) is fixed, < PTIME > co-NP

V. The Open Problem

, Can be rational, algebraic, or transcendental

If $\mathcal{D} \notin \mathbb{Q}$ we can use the approximation algorithm

If $\mathcal{D} \in \mathbb{Q}$ then we can probably compute it directly

, Can be rational, algebraic, or transcendental

Can we decide whether $\mathcal{D} \in \mathbb{Q}$?

Decide whether $\mathcal{D} \in \mathbb{Q}$

When there are no multiplicative relations:

polytope

Decide whether $\mathcal{D} \in \mathbb{Q}$

the problem reduces to:

 $T_n(\cos heta) = \cos(n heta)$

- When there are at most three dominant eigenvalues,

 - Given $\alpha \in \mathbb{Q}$, decide whether $\cos^{-1}(\alpha) \in \mathbb{Q}\pi$
 - for some n, a is a root of $T_n(x) 1$ or $T_n(x) + 1$

Decide whether $\mathcal{D} \in \mathbb{Q}$

the problem reduces to:

 $T_n(\cos heta) = \cos(n heta)$ –

Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.

- When there are at most three dominant eigenvalues,

 - Given $\alpha \in \mathbb{Q}$, decide whether $\cos^{-1}(\alpha) \in \mathbb{Q}\pi$

for some n, a is a root of $T_n(x) - 1$ or $T_n(x) + 1$

I. The Problem

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if end while

Set of

- 1. Is it empty?
- 2. Is it infinite? 3. How big is it
- inside \mathbb{N} ?

Decision questions:

- 1. Is Region A reached?
- (Is there at least one ?)
- Known as the **positivity problem**; at least as hard as Skolem's problem
- 2. Is Region A reached infinitely often? (Are there infinitely many ?)
- Known as the **ultimate positivity problem**; also open & difficult

In this paper:

3. How much more frequent are compared to ??

II. The Theorems

Theorem 1. " $\mathcal{D} = 0$? " is decidable. (so is " $\mathcal{D} = 1$? " by symmetry) **Theorem 1a.** For diagonalisable update matrices: $\mathcal{D} = 0 \Leftrightarrow \text{finitely many} \blacksquare$

Theorem 2. \mathcal{D} can be computed to arbitrary precision.

Theorem 3. " $\mathcal{D} \in \mathbb{Q}$?" is decidable, when there are at most three dominant eigenvalues.

IV. The Proof

Theorem 2. \mathcal{D} can be computed to arbitrary precision.

Thank You

Theorems

