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Scheme

  Update Matrix

  General Update Matrix

Rotations on the circle
Conserve sign information

Conserve enough 
information for density

Weyl’s 
equidistribution

A stronger 
version of Weyl’s 
theorem

             +

Koiran’s 
approximation of 
volumes of 
definable sets 

M Rotations on a 
subgroup of 
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Preprocessing
To understand the good property of the subsequences, note:

sometimes there may be multiplicative relations among λ:

integers                     such that: 

so e.g.       can be written as a product of integer powers of other roots  

In the subsequences all the dependencies are gathered



Preprocessing

Good property: the subsequences have the same sign as

independent

independent

dependent
remainder tends to zero
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Density of                                                           = vol( )X

are linearly 
independent over 
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Theorem 1. “              “  is decidable. 
(so is “                 “  by symmetry)
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                   |D(n)| > |R(n)| .
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                if and only if

D(n)>0 for infinitely many n

Theorem 1a. For diagonalisable update matrices: 

                                      finitely many               

Theorem 1a does not hold for 
nondiagonalisable matrices. 
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number of 
number of

Approximate volume1.How to make a grid such 
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2. How fine should the grid be 
for |approx - vol|<ε ?

Theorem 2.     can be computed to arbitrary  precision.

there is also a Monte-Carlo 
type algorithm



Complexity

 < PSPAC
 when number of variables (order 

of LRS) is fixed, < PTIM
 > co-NP
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