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X <— 0y« 06z« 4
while true do

X < 4x + 3y
y < 4y — 3x
Z < 0z

if y + z > 0 then

else

end if

end while



X—0y—6z<47° arbitrary number of variables

while true do ranging over integers
X < 4x + 3y
y < 4y — 3x ,\
Z <z * linear updates

if y 4+ z > 0 then

else K’ Lo .
* polynomial inequality

end if

end while
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while true do
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Z < Oz

> if y + 2z > 0 then

else

end if

end while
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X <— 0y« 06z« 4
while true do
X < 4x + 3y
y < 4y — 3x
Z < JOZ
if y+2z>0then X
Region A
else
» Region B
end if

end while




X0y« 6z« 4
while true do
X < 4x + 3y
y < 4y — 3x
Z < JZ
if y+z>0then EREEEEEEREEEESE-. .-
Region A
else
Region B
end if

end while



X0y« 6z« 4

while truc do EEEEEEEEEEEEEE- - -
X < 4x + 3y
y < 4y = 3x . - L
S 5y Decision questions:
if y +2z > 0 then 1. Is Region A reached?
eglon A (Is there at least one ¥ ?)
else
Region B
end if
end while 2. Is Region A reached infinitely often?

(Are there infinitely many [ ?)
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X< 0;y<«6;z<«< 4

while true do EEEEEEEEENEEEEEN- - -
X < 4x + 3y
y < 4y — 3x o : .
v « 5 Decision questions:
if y +2z > 0 then 1. Is Region A reached?
eiiglon A (Is there at least one | ?)
Region B * Known as the positivity problem;
end if at least as hard as Skolem’s problem
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3. How much more frequent are [l compared to 7



X< 0;y« 6;z<« 4

while true do EEEEEEEEEEEEEN:- -
X < 4x + 3y
Z : ;2} o Decision questions:
if y +2z > 0 then 1. Is Region A reached?
eiigion A (Is there at least one | ?)
Region B * Known as the positivity problem;
end if at least as hard as Skolem’s problem
end while 2. Is Region A reached infinitely often?
(Are there infinitely many & ?)
Set of I * Known as the ultimate positivity problem;
1. Is it empty? also open & difficult
2. Is it infinite? In this paper:

3. How big is it

o 3. How much more frequent are [l compared to 7
inside N ?



Density

1,2,... NS
Sc N DO(S) ¢ — llmmf%

n— 00 n,

What proportion of first n numbers arein S (n — 00 ) ?

o D,( Finite Set) = 0 D, ( co-Finite Set) = 1

e D,(Arithmetic progression of length k) = 1/k,

+ D,(Geometric progression) = 0,

e D, (Primes) — 0, (Prime Number Theorem).



Density

1,2,... NS
Sc N DO(S) ¢ — llmmf%

n— 00 n,

What proportion of first n numbers arein S (1 — 00 ) ?

D,(X) = 0 = X is sparse
D,(X) =1 = X is very dense

if D,(X) = D°(X), denote by D(X)



X< 0;y<«6;z<«< 4
while true do
X < 4x + 3y
y < 4y — 3x
Z < 3z
if y +2z > 0 then
Region A
else
Region B
end if

end while

Number of B in first n entries

n

Y

n &N



X<« 0y« 6z« 4
while true do
X < 4x + 3y
y < 4y — 3x
Z < 32
if y +2z > 0 then
Region A
else
Region B
end if

end while

~ Number of ® in first n entries
im ——Mm——
Nn— 00 T

Exists due to:

Jason P Bell and Stefan Gerhold. On the positivity set of a linear recurrence
sequence. Israel Journal of Mathematics, 157(1):333—-345, 2007.

Denote it by D.
Main character of the story
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Theorems

Theorem 1. “D = 07 “ is decidable.
(sois “D = 17 “ by symmetry)

Theorem 1la. For diagonalisable update matrices:
D = 0 < finitely many

Theorem 2. D can be computed to arbitrary precision.

Theorem 3. “D € (Q7“ is decidable,
when there are at most three dominant eigenvalues.



X< 0;y<«6;z<«< 4
while true do
X < 4x + 3y
y < 4y — 3x
Z < 3z
if y +z > 0 then
Region A
else
Region B
end if

end while

To Summarise:

* We can decide if Region A is entered not
too rarely

* We can say a lot about the asymptotic
frequency of entering Region A/Region B



[1l. The Example, or
First Observation



X< 0;y<« 6z« 4
while true do

X < 4x + 3y

y < 4y — 3x

Z < 2

if y + z > 0 then

How frequently is entered?

else

end if

end while



X0y« 6z« 4
while true do

‘ P
X 4x + 3y How frequently is entered:
y < 4y — 3x
A cos 1 (—2/3)
ify+2>0then () 732279 ... = — — 1
e
else
end if

end while



X < O;y — 6:z<< 14
while true do

x < 4x + 3y
y < 4y — 3x 41 —3 0
Z < 5z
if y + z > 0 then 0 6 4-13 4 0

0O 0 o
else C

Y

end if y+z in the nth loop iteration

end while



X< 0;y < 6;z <« 4 0 6 4)-13 4 0
while true do 0 0 &
X < 4x + 3y L
Yy < 4y — 3x y+z in the nthYloop iteration
Z < Oz
if y +2z > 0 then 4/5 —3/5 0\"
olse 5% (3/5 4/5 0
\ 0 0 1
end if
end while

2D rotation



3/5 4/5 0

4/5 —3/5 0\"
\0 0 1

2D rotation

COS sSin
r(cos,sin f) - ( 7 SO) = r(cos # cos ¢ — sin #sin ¢, cos  sin ¢ + sin 6 cos @)

—SIny COSyY
= r(cos(0 + ¢),sin(6 + ¢))



while true do 0 0 & 1

X < 4x + 3y @ »

Yy < 4y — 3x y+z in the nthYloop iteration

Z < Oz - ,

if y +z > 0 then 4/5 —-3/5 0 cosny —sinny 0
5"13/5 4/5 0| =5"|sinnpy cosnp 0

else 0 0 1 0 0 1

end if Rotation in the first two coordinates by ¢ = cos 14/5

end while



Rotation in the first two coordinates by ¢ = cos™ " 4/5

x<— 0y« 6z« 4 (0,6)
while true do I
X < 4x + 3y
y < 4y — 3x
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else

end if

end while
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Rotation in the first two coordinates by ¢ = cos™ " 4/5

x<— 0y« 6z« 4 (0,6)
while true do I
X < 4x + 3y
y < 4y — 3x
Z < 3z
if y + z > 0 then

else

end if

end while



Rotation in the first two coordinates by ¢ = cos™ " 4/5

X< 0;y<«6;z<«< 4 (0.6) EEE

while true do
X < 4x + 3y
y < 4y — 3x
Z < 3zZ
if y +z > 0 then
Region A
else

end if

end while



Rotation in the first two coordinates by ¢ = cos™ " 4/5

X0y« 6;z« 4 y+2z2<0 y+z>0
while true do [
X < 4x + 3y
y < 4y — 3x
Z < 3z
if y + z > 0 then

else

end if

end while
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1
— cos 4/5
i / How frequently are we on the red arc?

Theorem (Weyl, 1910). Let p be an irrational
real number. Then the sequence:

D, 2p, 3p, ...
is uniformly distributed mod 1.




1
— cos 4/5
i / How frequently are we on the red arc?

Theorem (Weyl, 1910). Let p be an irrational
real number. Then the sequence:

D, 2p, 3p, ...
is uniformly distributed mod 1.

~ length of B cos 1(—2/3) _ 0.739978

27T T

D
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Scheme

Conserve sign information

T . Rotations on the circle .
4 —3 0 N
3 4 0 | Sy \ Weyl’s
00 1 equidistribution
Update Matrix J
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General Update Matrix )
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General Update Matrix

Scheme

Conserve sign information

- -
-------
- S

Rotations on the circle

3 4 0 ’ 7 \
0O 0 1 >

Update Matrix J

Conserve enough
information for density

- . .
——————
" o~
- ~~
~

Rotations on a
subgroup of T

Weyl’s
equidistribution

A stronger
version of Weyl’s
theorem
n
Koiran’s
7 approximation of
volumes of
definable sets
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Linear Recurrence Sequences

v characteristic polynomial of M
Theorem (Cayley-Hamilton). t(M)=0

K— matrix

OIM?® —AM?* + M +5I =0




Linear Recurrence Sequences

v characteristic polynomial of M
Theorem (Cayley-Hamilton). t(M)=0

- matrix
2M™ — AM™? + M+ 5 M =

0



Linear Recurrence Sequences

v characteristic polynomial of M
Theorem (Cayley-Hamilton). t(M)=0
- matrix
IM™S —AM™ 2 + M 4 5M™ =0

Uy — (Mn)z',j
zun+3 — 4un+2 T Up41 T Uy, = 0
Entries of M™are LRS.

We are interested in the density of {n:wu, > 0}
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N
N

Linear Recurrence Sequences

By Jordan decomposition

p \/ - 6 Q

up = » Py(n) A
i=1

\_ e Q!

D := density of {n : u, > 0}

- . _J

- positivity set of (Un)neN



Preprocessing

Split the problem: (u,77)neN, [ {0,1,..., T —1}

compute some large period T

where the smaller problems (i.e. subsequences)
have some good properties

—----------.-h. _—-----------h. _—-----------h. _—---------_--. _—-----------h.

- L] - L] - L] - L] - L]
- L 3 - L - L - oy - L ]
- L - §~ ‘4 §~ ’f N ‘4 N



Preprocessing

To understand the good property of the subsequences, note:
d
up = » Py(n) A
1=1

sometimes there may be multiplicative relations among A:
integers 21,...,24 such that:

NIAZ LN =

so e.g. A;' can be written as a product of integer powers of other roots

In the subsequences all the dependencies are gathered



Preprocessing

Good property: the subsequences have the same sign as

@

E C’i az

el

n

J

independent

87

€D jel

| i
>_cille

dependent

is trivial.

C

C

R(n),

J

Zk) - Zk

—

n & N

., remainder tends to zero

Furthermore, the group

{(Zl,...,

L o0y O‘k =1} = {0}

1ndependent



Rotations

(af,ay,...,a),

i

X

}7

n € N

{01,...,0,1}
are linearly

independent over Q



E.g. for k=2

Rotations

(af,ay,...,a),

n € N

{01,...,0;,1}
are linearly

independent over Q



Rotations

(af,ay,...,a),

n € N

{01,...,0,1}
are linearly

independent over Q



Rotations

(af,ay,...,a),

n € N

{01,...,0,1}
are linearly

independent over Q



Rotations

(af,ay,...,a),

n € N

{01,...,0,1}
are linearly

independent over Q



Rotations

(af,ay,...,a),

n € N

{01,...,0,1}
are linearly

independent over Q



Rotations

(af,ay,...,a),

n € N

{01,...,0,1}
are linearly

independent over Q



Rotations

(af,ay,...,a),

n € N

{01,...,0,1}
are linearly

independent over Q



Rotations

{61,...,0;,1}

(a?7 ag7 e aZ’)’ n € N are linearly
independent over Q

Theorem (Kronecker).
(nfp mod 1,,...,n0y mod 1), n € N

is dense in the hypercube




Rotations

a: — e2m0; (a7, a5,...,a;), mneN {zigl.iﬁ’e?rjli}
? independent over Q
: X Theorem (Weyl, 1912).
(nfp mod 1,,...,n0; mod 1), n € N
z; +0; mod 1 53 is equidistributed in the
hypercube

0

The amount of time spent in X is proportional to vol (X)



Rotations

{64, ..., O, 1}

_2mio; (ar'lz, 0437 Cee a2)7 n € N are linearly
independent over Q

X Theorem (Weyl, 1912).
é} (nfp mod 1,,...,n0; mod 1), n € N

is equidistributed in the
hypercube

1

0

The amount of time spent in X is proportional to vol (X)

Density of {n : (nf1mod1,...,nf;mod1) € X} = vol(X)
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T _D

D(n)

U&\ Density of {n . D(n) > O} — VOI(U)

<
>

0 1

Her\eD(0)>O




Zcia?—l—ZciHaj-i’j%—c%—R(n), n c N

icl icD el

— D

D(n)

U&\ Density of {n . D(n) > O} — VOI(U)
[

@)
2, vol(U) >0 < U #10(
0 1 An equivalent statement can
be decided with FO of reals

Her\eD(0)>O

so we can decide if the density of the positivity set of D(n) is nonzero



Zcza —I—ZczHaq’—l—c—l—R neN

el weD  gel
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D(n)

We need: Density of {n : D(n) + R(n) > 0}
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(Main obstruction to decidability of Skolem, Positivity, etc.)
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We need: Density of {n : D(n) + R(n) > 0}
When is |D(n)| < |R(n)|?

Difficult problem: Depends on diophantine properties of a
(Main obstruction to decidability of Skolem, Positivity, etc.)
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due to Skolem-Mahler-Lech
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When is [D(n)| < |R(n)|?

e Density of {n:D(n)=0}=0
due to Skolem-Mahler-Lech

* lim |R(n)| =0 polynomially fast

nN— 00

Theorem 1. “ D = 07 “ is decidable.
(sois “PD = 17 “ by symmetry)



Diagonalisable Matrices

. ‘ ‘ c;o’ + ¢i |l a4+ ¢+ R(n), ncN
When M is diagonalisable: ; ; Q "

« - D

lim |R(n)| =0 exponentially fast D(n)
n—oo

In this case, the p-adic subspace
theorem implies:

/—\ not effective

there is some N, such that for all n>N
|[D(n)| > |R(n) | .

D(n)+R(n) >0 for infinitely many n
if and only if
D(n) >0 for infinitely many n



Diagonalisable Matrices

Zcz-a?—l—ZciHa?’j—l—c—l—R(n), n €N

When M is diagonalisable: 7 T
lim |R(n)| = 0 exponentially fast i D(n) i
n—0o0

In this case, the p-adic subspace
theorem implies:

/ — not effective
Theorem 1a does not hold for

there is some N, such that for all n>N
|[D(n)| > |R(n) | .

nondiagonalisable matrices.

Joél Ouaknine @&, James Worrell :
Ultimate Positivity is Decidable for Simple Linear Recurrence Sequences. ICALP (2) 2014: 330-341

D(n)+R(n) >0 for infinitely many n
if and only if —
D(n) >0 for infinitely many n

Theorem 1la. For diagonalisable update matrices:
D = 0 < finitely many &



Approximating the Density

can be even transcendental

D

Density of {n : D(n) > 0} = vol(U)



Approximating the Density

How to approximate the volume of U?

4




Approximating the Density

How to approximate the volume of U?

........... Approximate volume

SE(V/-Nenns number of
IIIIIII number of e




Approximating the Density

How to approximate the volume of U?

1.How to make a grid such
that « € U can be decided

2. How fine should the grid be
for |approx - vol| <g?

Pascal Koiran:
Approximating the Volume of Definable Sets. FOCS 1995: 134-141

Approximate volume
|

number of e
number of e



Approximating the Density

1.How to make a grid such
that « € U can be decided

2. How fine should the grid be
for |approx - vol| <g ?

Pascal Koiran:
Approximating the Volume of Definable Sets. FOCS 1995: 134-141

there is also a Monte-Carlo
type algorithm

Approximate volume
|

number of e
number of e

Theorem 2. D can be computed to arbitrary precision.



Complexity

e < PSPACE

 when number of variables (order
of LRS) is fixed, < PTIME

e > co-NP



V. The Open Problem



Decide whether

1
D> —
2

Can be rational, algebraic, or
transcendental



Decide whether

1
D> —
2
If D g Q we can use the Can be rational, algebraic, or
approximation algorithm transcendental
If DeQ thenwecan  Can we decide

probably compute it directly whether D € Q ?



Decide whether D e Q

When there are no multiplicative relations:

Decide if / df c Q'

polytope



Decide whether D e Q

When there are at most three dominant eigenvalues,
the problem reduces to:

Given ¢ & @ , decide whether cos_l(a) c Qm

)

for some n, a is a root of
Th(x) —1 or Th(x)+1

T, (cos ) = cos(nb)



Decide whether D e Q

When there are at most three dominant eigenvalues,
the problem reduces to:

Given ¢ & @ , decide whether cos_l(a) c Qm

)

for some n, a is a root of
T.(x) —1 or T.(z) + 1

Theorem 3. “D € (Q7“ is decidable,
when there are at most three dominant eigenvalues.

T, (cos 8) = cos(nb)



. The

X0y« 6z« 4
while true do
X < 4x + 3y
y < 4y —3x
Z « 5z
if y +z> 0 then
Region A
else
Region B
end if
end while

Set of
1. Is it empty?
2. Is it infinite?
3. How big is it
inside N ?

Problem

Il. The Theorems

Theorems

Decision questions:

1. Is Region A reached?
(Is there at least one | ?)

e Known as the positivity problem;
at least as hard as Skolem’s problem
2. Is Region A reached infinitely often?
(Are there infinitely many M ?)

* Known as the ultimate positivity problem;

also open & difficult

Theorem 1. “ D = 07 “ is decidable.

Thank You

(sois “D = 1?7 “ by symmetry)

Theorem 1la. For diagonalisable update matrices:
D = 0 < finitely many ™

l1l. The Example, or
First Observation

= cos ' 4/5
p = cos 4/ How frequently are we on the red arc?

Theorem (Weyl, 1910). Let p be an irrational
real number. Then the sequence:

P, 2p, 3p, ...
is uniformly distributed mod 1.

Theorem 2. D can be computed to arbitrary precision.

In this paper:

3. How much more frequent are Ml compared to ?

Theorem 3. “D € (Q7“ is decidable,
when there are at most three dominant eigenvalues.

IV. The Proof

Approximating the Density

1.How to make a grid such
that - € U can be decided

2. How fine should the grid be
for |approx - vol | <g ?

Pascal Koiran:
Approximating the Volume of Definable Sets. FOCS 1995: 134-141

Approximate volume
|
number of ¢

number of o

Theorem 2. D can be computed to arbitrary precision.

D length of ===  cos !(—2/3)

= = 0.732278. ..

2T s

V. The Open Problem

Decide whether D€ Q

When there are no multiplicative relations:

n
1 .,
Decide if /,c I I ————dZ € Qn"
i=1

2

/ 1 - wz
polytope



