
MSO+∇ is undecidable

Miko laj Bojańczyk Edon Kelmendi Micha l Skrzypczak

University of Warsaw

LICS 24-27 June 2019 Vancouver



Monadic Second Order Logic on Trees



Monadic Second Order Logic on Trees



Monadic Second Order Logic on Trees



Rabin’s theorem

Theorem (Rabin 1969)

The problem:

input: An MSO formula ϕ

output: Is ϕ true in the full binary tree

is decidable.

⇒ decidability of LTL, CTL*, modal µ-calculus, ...

Question

Is there a probabilistic extension of Rabin’s theorem that subsumes
probabilistic logics?



Measure quantifier

• Henryk Michalewski and Matteo Mio. Measure quantifier in
monadic second order logic, LFCS, 2016.

∀X Φ(X) ≡ Φ(X) holds for all sets of nodes X

+

a new quantifier ≡
Φ(X) holds almost surely for a

randomly chosen set of nodes X



Measure quantifier

• Henryk Michalewski and Matteo Mio. Measure quantifier in
monadic second order logic, LFCS, 2016.

∀X Φ(X) ≡ Φ(X) holds for all sets of nodes X

+

a new quantifier ≡
Φ(X) holds almost surely for a

randomly chosen set of nodes X



An attempt

independent coin throw for every node



An attempt

independent coin throw for every node



An attempt

independent coin throw for every node



An attempt

independent coin throw for every node



An attempt

independent coin throw for every node



An attempt

independent coin throw for every node



An attempt

independent coin throw for every node



An attempt

independent coin throw for every node

⇒ undecidable



A branch quantifier

• Henryk Michalewski and Matteo Mio. Measure quantifier in
monadic second order logic, LFCS, 2016.

∀X Φ(X) ≡ Φ(X) holds for all X

+

a new quantifier ≡
Φ(π) holds almost surely for a

randomly chosen branch π



A branch quantifier

• Henryk Michalewski and Matteo Mio. Measure quantifier in
monadic second order logic, LFCS, 2016.

∀X Φ(X) ≡ Φ(X) holds for all X

+

∇π Φ(π) ≡
Φ(π) holds almost surely for a

randomly chosen branch π



A branch quantifier

independent coin throw to choose a
child at every step



A branch quantifier

independent coin throw to choose a
child at every step



A branch quantifier

independent coin throw to choose a
child at every step



A branch quantifier

independent coin throw to choose a
child at every step



Example: probability measure



Example: probability measure



Definition: ∇ quantifier

∇π Φ(π)

III

Φ(π) holds almost surely for a randomly chosen branch π



Definition: ∇ quantifier

∇π Φ(π)

III

There exists a measurable set of branches Π such that

P[Π] = 1 and every π ∈ Π satisfies Φ(π)



Example



Example: formula holds



Example: formula holds



Example: formula holds



Example: formula holds



Example: formula holds



Example: formula holds



Example: formula holds



Weak MSO+∇

X, Y, Z, . . . range over finite sets

Theorem (Bojańczyk 2016)

For every formula
compute−−−−→ equivalent suitable automaton

Theorem (Bojańczyk, K, Gimbert 2017)

Emptiness of this automaton is decidable

Corollary

Weak MSO+∇ is decidable



Main theorem

Theorem

MSO+∇ is undecidable

- Independently and in parallel:

Raphaël Berthon, Emmanuel Filiot, Shibashis Guha, Bastien Maubert, Aniello
Murano, Laureline Pinault, Jean-François Raskin, and Sasha Rubin. Monadic
second-order logic with path-measure quantifier is undecidable.
https://arxiv.org/abs/1901.04349

A certain automaton has undecidable emptiness



Main theorem

Theorem

MSO+∇ is undecidable

- Independently and in parallel:

Raphaël Berthon, Emmanuel Filiot, Shibashis Guha, Bastien Maubert, Aniello
Murano, Laureline Pinault, Jean-François Raskin, and Sasha Rubin. Monadic
second-order logic with path-measure quantifier is undecidable.
https://arxiv.org/abs/1901.04349

A certain automaton has undecidable emptiness



Families of Intervals

Proof: MSO+∇ can express some asymptotic counting property.



Families of Intervals

Proof: MSO+∇ can express some asymptotic counting property.



Families of Intervals

Proof: MSO+∇ can express some asymptotic counting property.



Families of Intervals

Proof: MSO+∇ can express some asymptotic counting property.



Families of Intervals

Proof: MSO+∇ can express some asymptotic counting property.



Families of Intervals

Proof: MSO+∇ can express some asymptotic counting property.



I(π) is eventually constant:

I(π) = 2, 4, 1, 7,

only 5︷ ︸︸ ︷
5, 5, 5, . . .

Theorem
There is a formula ϕ(X,Y ) of MSO+∇ which is true if and only if

P[I is eventually constant] = 1

for some family of intervals I (that is unique if it exists) where

X = source(I) Y = target(I).



I(π) is eventually constant:

I(π) = 2, 4, 1, 7,

only 5︷ ︸︸ ︷
5, 5, 5, . . .

Theorem
There is a formula ϕ(X,Y ) of MSO+∇ which is true if and only if

P[I is eventually constant] = 1

for some family of intervals I (that is unique if it exists) where

X = source(I) Y = target(I).



Counting



Counting



Counting



Eventually constant property

P[I is eventually constant] = 1

is asymptotic in two ways, it allows:

1. a set of branches with measure zero where the property does not hold

2. finite delay before the constant tail starts

we can count in a very weak way



Eventually constant property

P[I is eventually constant] = 1

is asymptotic in two ways, it allows:

1. a set of branches with measure zero where the property does not hold

2. finite delay before the constant tail starts

we can count in a very weak way



Proof

express boundedness properties of I

express I is eventually constant



Proof

express boundedness properties of I

express I is eventually constant



Proof

express boundedness properties of I

express I is eventually constant



Back to the Example



Back to the Example



Lemma
MSO+∇ can express

P[lim inf I < ∞] > 0.

(∗) there exists I ′ ⊆ I such that

P
[

I ′ io︸ ︷︷ ︸
a branch visits
sources of I′

infinitely often

]
> 0

and all K ⊆ I ′ satisfy

P
[
K io ⇒ target(K) io

]
= 1.



Lemma
MSO+∇ can express

P[lim inf I < ∞] > 0.

(∗) there exists I ′ ⊆ I such that

P
[

I ′ io︸ ︷︷ ︸
a branch visits
sources of I′

infinitely often

]
> 0

and all K ⊆ I ′ satisfy

P
[
K io ⇒ target(K) io

]
= 1.



Proof of Lemma

P[lim inf I < ∞] > 0 ⇒
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

By countable additivity of measures:

∃n ∈ N P[lim inf I = n] > 0



Proof of Lemma

P[lim inf I < ∞] > 0 ⇒
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

Say

P[lim inf I = 5] > 0

Take I ′ to be intervals of length exactly 5



Proof of Lemma

P[lim inf I < ∞] > 0 ⇒
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

Say

P[lim inf I = 5] > 0

Take I ′ to be intervals of length exactly 5



Proof of Lemma

P[lim inf I < ∞] > 0 ⇐
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

An interval is a record breaker if it is strictly longer than all of its ancestors

Take K to be the record breakers of I ′.

Proposition. P[target(K) io] = 0. (as in example; K grows at least linearly)

From the hypothesis: P[K io] = 0 and P[lim sup I ′ = ∞] = 0.



Proof of Lemma

P[lim inf I < ∞] > 0 ⇐
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

An interval is a record breaker if it is strictly longer than all of its ancestors

Take K to be the record breakers of I ′.

Proposition. P[target(K) io] = 0. (as in example; K grows at least linearly)

From the hypothesis: P[K io] = 0 and P[lim sup I ′ = ∞] = 0.



Proof of Lemma

P[lim inf I < ∞] > 0 ⇐
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

An interval is a record breaker if it is strictly longer than all of its ancestors

Take K to be the record breakers of I ′.

Proposition. P[target(K) io] = 0. (as in example; K grows at least linearly)

From the hypothesis: P[K io] = 0 and P[lim sup I ′ = ∞] = 0.



Proof of Lemma

P[lim inf I < ∞] > 0 ⇐
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

An interval is a record breaker if it is strictly longer than all of its ancestors

Take K to be the record breakers of I ′.

Proposition. P[target(K) io] = 0. (as in example; K grows at least linearly)

From the hypothesis: P[K io] = 0 and P[lim sup I ′ = ∞] = 0.



Proof

express boundedness properties of I ✓

express I is eventually constant























Encode (3, 0, 2, 1) by



Encode (3, 0, 2, 1) by



Encode (3, 0, 2, 1) by

Length of I = dim = 4



Encode (3, 0, 2, 1) by

Length of I = dim = 4



Conclusion

Question

Is there any quantifier that can be added to MSO while retaining decidability?

• take some set of operations under which REG are closed
• prove that any family of languages F ⊃ REG closed under such

operations must contain some undecidable language



Conclusion

Question

Is there any quantifier that can be added to MSO while retaining decidability?

• take some set of operations under which REG are closed
• prove that any family of languages F ⊃ REG closed under such

operations must contain some undecidable language


