$\textbf{MSO+} \nabla \textbf{ is undecidable}$

Mikołaj Bojańczyk Edon Kelmendi Michał Skrzypczak

University of Warsaw

LICS 24-27 June 2019 Vancouver

Monadic Second Order Logic on Trees

$\exists X \ \exists y \ \forall x \ (y > x) \ \Rightarrow \ (x \in X)$

Monadic Second Order Logic on Trees

Monadic Second Order Logic on Trees

Rabin's theorem

Theorem (Rabin 1969)

The problem:

input: An MSO formula ϕ **output:** Is ϕ true in the full binary tree

is decidable.

 \Rightarrow decidability of LTL, CTL*, modal $\mu\text{-calculus,}$...

Question

Is there a *probabilistic* extension of Rabin's theorem that subsumes probabilistic logics?

• Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

$\forall X \ \Phi(X) \equiv \Phi(X)$ holds for all sets of nodes X

• Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

 $\begin{array}{ll} \forall X \ \Phi(X) &\equiv & \Phi(X) \ \mbox{holds for all sets of nodes } X \\ &+ \\ \mbox{a new quantifier} \equiv & \displaystyle \frac{\Phi(X) \ \mbox{holds almost surely for a} \\ & randomly \ \mbox{chosen set of nodes } X \end{array}$

• Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

$$\begin{array}{ll} \forall X \ \Phi(X) &\equiv & \Phi(X) \ \text{holds for all } X \\ &+ \\ \text{a new quantifier} \equiv & \displaystyle \frac{\Phi(\pi) \ \text{holds almost surely for a} \\ & randomly \ \text{chosen } branch \ \pi \end{array}$$

• Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

$$\begin{array}{ll} \forall X \ \Phi(X) &\equiv & \Phi(X) \text{ holds for all } X \\ &+ \\ \nabla \pi \ \Phi(\pi) &\equiv & \frac{\Phi(\pi) \text{ holds almost surely for a}}{randomly \text{ chosen } branch \pi} \end{array}$$

Example: probability measure

Example: probability measure

Definition: ∇ quantifier

$\nabla \pi \ \Phi(\pi)$

Ш

 $\Phi(\pi)$ holds almost surely for a randomly chosen branch π

Definition: ∇ quantifier

 $\nabla \pi \Phi(\pi)$

Ш

There exists a measurable set of branches $\boldsymbol{\Pi}$ such that

 $\mathbb{P}[\Pi] = 1$ and every $\pi \in \Pi$ satisfies $\Phi(\pi)$

Example

Weak MSO+ ∇

 X, Y, Z, \ldots range over *finite* sets

Theorem (Bojańczyk 2016)

For every formula $\xrightarrow{compute}$ equivalent suitable automaton

Theorem (Bojańczyk, K, Gimbert 2017)

Emptiness of this automaton is decidable

Corollary

Weak $MSO+\nabla$ is decidable

Main theorem

Theorem

MSO+ abla is undecidable

Main theorem

Theorem

$MSO+\nabla$ is undecidable

- Independently and in parallel:

Raphaël Berthon, Emmanuel Filiot, Shibashis Guha, Bastien Maubert, Aniello Murano, Laureline Pinault, Jean-François Raskin, and Sasha Rubin. Monadic second-order logic with path-measure quantifier is undecidable. https://arxiv.org/abs/1901.04349

A certain automaton has undecidable emptiness

 $\mathcal{I}(\pi)$ is eventually constant:

$$\mathcal{I}(\pi) = 2, 4, 1, 7, \underbrace{5, 5, 5, \ldots}^{\text{only 5}}$$

 $\mathcal{I}(\pi)$ is eventually constant:

$$\mathcal{I}(\pi) = 2, 4, 1, 7, \underbrace{5, 5, 5, \ldots}^{\text{only } 5}$$

Theorem

There is a formula $\phi(X, Y)$ of MSO+ ∇ which is true if and only if

 $\mathbb{P}[\mathcal{I} \text{ is eventually constant}] = 1$

for some family of intervals \mathcal{I} (that is unique if it exists) where

$$X = \text{source}(\mathcal{I})$$
 $Y = \text{target}(\mathcal{I}).$

Counting

Counting

Counting

$\mathbb{P}[\mathcal{I} \text{ is eventually constant}] = 1$

is asymptotic in two ways, it allows:

- $1. \$ a set of branches with measure zero where the property does not hold
- 2. finite delay before the constant tail starts

$\mathbb{P}[\mathcal{I} \text{ is eventually constant}] = 1$

is asymptotic in two ways, it allows:

- $1. \$ a set of branches with measure zero where the property does not hold
- 2. finite delay before the constant tail starts

we can count in a very weak way

express boundedness properties of $\ensuremath{\mathcal{I}}$

express boundedness properties of $\ensuremath{\mathcal{I}}$

use techniques from MSO+U

Mikołaj Bojańczyk, Paweł Parys, and Szymon Toruńczyk. The MSO+U Theory of $(\mathbb{N},<)$ Is Undecidable. STACS 2016

Mikołaj Bojańczyk, Laure Daviaud, Bruno Guillon, Vincent Penelle, and A. V. Sreejith Undecidability of MSO+ultimately periodic, 2018

express ${\mathcal I}$ is eventually constant

Back to the Example

Back to the Example

Lemma

 $MSO+\nabla$ can express

$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0.$

Lemma

 $MSO+\nabla$ can express

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0.$$

(*) there exists $\mathcal{I}' \subseteq \mathcal{I}$ such that

$$\mathbb{P}\begin{bmatrix} \mathcal{I}' \text{ io } \end{bmatrix} > 0$$

a branch visits sources of \mathcal{I}' infinitely often

and all $\mathcal{K}\subseteq\mathcal{I}'$ satisfy

 $\mathbb{P}[\mathcal{K} \text{ io } \Rightarrow \text{ target}(\mathcal{K}) \text{ io}] = 1.$

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0 \Rightarrow \begin{cases} \exists \mathcal{I}' \subseteq \mathcal{I} : \mathbb{P}[\mathcal{I}' \text{ io}] > 0 \\ \forall \mathcal{K} \subseteq \mathcal{I}' : \mathbb{P}[\mathcal{K} \text{ io } \Rightarrow \text{ target}(\mathcal{K}) \text{ io}] = 1 \end{cases}$$

By countable additivity of measures:

 $\exists n \in \mathbb{N} \quad \mathbb{P}[\liminf \mathcal{I} = n] > 0$

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0 \Rightarrow \begin{cases} \exists \ \mathcal{I}' \subseteq \mathcal{I} \ . \ \mathbb{P}[\mathcal{I}' \ \mathbf{io}] > 0 \\ \forall \ \mathcal{K} \subseteq \mathcal{I}' \ . \ \mathbb{P}[\mathcal{K} \ \mathbf{io} \ \Rightarrow \ \mathrm{target}(\mathcal{K}) \ \mathbf{io}] = 1 \end{cases}$$

Say

 $\mathbb{P}[\liminf \mathcal{I} = 5] > 0$

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0 \Rightarrow \begin{cases} \exists \ \mathcal{I}' \subseteq \mathcal{I} \ . \ \mathbb{P}[\mathcal{I}' \ \mathbf{io}] > 0 \\ \forall \ \mathcal{K} \subseteq \mathcal{I}' \ . \ \mathbb{P}[\mathcal{K} \ \mathbf{io} \ \Rightarrow \ \mathrm{target}(\mathcal{K}) \ \mathbf{io}] = 1 \end{cases}$$

Say

 $\mathbb{P}[\liminf \mathcal{I} = 5] > 0$

Take \mathcal{I}' to be intervals of length exactly 5

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0 \iff \begin{cases} \exists \ \mathcal{I}' \subseteq \mathcal{I} \ . \ \mathbb{P}[\mathcal{I}' \ \mathbf{io}] > 0 \\ \forall \ \mathcal{K} \subseteq \mathcal{I}' \ . \ \mathbb{P}[\mathcal{K} \ \mathbf{io} \ \Rightarrow \ \mathrm{target}(\mathcal{K}) \ \mathbf{io}] = 1 \end{cases}$$

An interval is a record breaker if it is strictly longer than all of its ancestors

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0 \iff \begin{cases} \exists \ \mathcal{I}' \subseteq \mathcal{I} \ . \ \mathbb{P}[\mathcal{I}' \ \mathbf{io}] > 0 \\ \forall \ \mathcal{K} \subseteq \mathcal{I}' \ . \ \mathbb{P}[\mathcal{K} \ \mathbf{io} \ \Rightarrow \ \mathrm{target}(\mathcal{K}) \ \mathbf{io}] = 1 \end{cases}$$

An interval is a record breaker if it is strictly longer than all of its ancestors

Take \mathcal{K} to be the record breakers of \mathcal{I}' .

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0 \iff \begin{cases} \exists \ \mathcal{I}' \subseteq \mathcal{I} \ . \ \mathbb{P}[\mathcal{I}' \ \mathbf{io}] > 0 \\ \forall \ \mathcal{K} \subseteq \mathcal{I}' \ . \ \mathbb{P}[\mathcal{K} \ \mathbf{io} \ \Rightarrow \ \mathrm{target}(\mathcal{K}) \ \mathbf{io}] = 1 \end{cases}$$

An interval is a record breaker if it is strictly longer than all of its ancestors

Take \mathcal{K} to be the record breakers of \mathcal{I}' .

Proposition. $\mathbb{P}[\operatorname{target}(\mathcal{K}) \mathbf{io}] = 0$. (as in example; \mathcal{K} grows at least linearly)

$$\mathbb{P}[\liminf \mathcal{I} < \infty] > 0 \iff \begin{cases} \exists \ \mathcal{I}' \subseteq \mathcal{I} \ . \ \mathbb{P}[\mathcal{I}' \ \mathbf{io}] > 0 \\ \forall \ \mathcal{K} \subseteq \mathcal{I}' \ . \ \mathbb{P}[\mathcal{K} \ \mathbf{io} \ \Rightarrow \ \mathrm{target}(\mathcal{K}) \ \mathbf{io}] = 1 \end{cases}$$

An interval is a record breaker if it is strictly longer than all of its ancestors

Take \mathcal{K} to be the record breakers of \mathcal{I}' .

Proposition. $\mathbb{P}[target(\mathcal{K}) \mathbf{io}] = 0$. (as in example; \mathcal{K} grows at least linearly)

From the hypothesis: $\mathbb{P}[\mathcal{K} \text{ io}] = 0$ and $\mathbb{P}[\limsup \mathcal{I}' = \infty] = 0$.

 $f = 2 \quad 7 \quad 9 \quad 10 \quad 15 \quad 0 \quad 4 \quad 18 \quad 29 \quad 105 \quad 20 \cdots$ $g = 10 \quad 24 \quad 42 \quad 13 \quad 7 \quad 1 \quad 0 \quad 0 \quad 2 \quad 5 \quad 5 \quad \cdots$ $f = 2 \quad 7 \quad 9 \quad 10 \quad 15 \quad 0 \quad 4 \quad 18 \quad 29 \quad 105 \quad 20 \cdots$ $g = 10 \quad 24 \quad 42 \quad 13 \quad 7 \quad 1 \quad 0 \quad 0 \quad 2 \quad 5 \quad 5 \quad \cdots$

 $f \sim g \equiv \bigvee$ sets of positions

f = 279101504182910520 \cdots g = 102442137100255 \cdots

 $f \sim g \equiv \bigvee$ sets of positions

 $F = (2,3,4) (0,20,4) (1,1,4) (43,12,14) (2,19,17) (9,11,99) \cdots$

F is an asymptotic mix of G := $\forall f \in F \ \exists g \in G \quad f \sim g$

F is an asymptotic mix of G := $\forall f \in F \ \exists g \in G \quad f \sim g$

Mikołaj Bojańczyk, Paweł Parys, and Szymon Toruńczyk. The MSO+U Theory of (N, <) Is Undecidable. STACS 2016

> **Lemma.** For all n there is F of dimension n that is not an asymptotic mix of any G of dimension < n.

F is an asymptotic mix of G := $\forall f \in F \ \exists g \in G \quad f \sim g$

Mikołaj Bojańczyk, Paweł Parys, and Szymon Toruńczyk. The MSO+U Theory of $(\mathbb{N},<)$ Is Undecidable. STACS 2016

Lemma. For all *n* there is *F* of dimension *n* that is *not* an asymptotic mix of any *G* of dimension < n.

boundedness

$$F \text{ is an asymptotic mix of } G :=$$

$$\forall f \in F \ \exists g \in G \quad f \sim g$$

Mikołaj Bojańczyk, Paweł Parys, and Szymon Toruńczyk. The MSO+U Theory of (N, <) Is Undecidable. STACS 2016

Lemma. For all *n* there is *F* of dimension *n* that is *not* an asymptotic mix of any *G* of dimension < n.

boundedness

counting

Length of
$$\mathcal{I} = \dim = 4$$

Conclusion

Question

Is there any quantifier that can be added to MSO while retaining decidability?

Conclusion

Question

Is there any quantifier that can be added to MSO while retaining decidability?

- take some set of operations under which REG are closed
 - prove that any family of languages $\mathcal{F} \supset REG$ closed under such operations must contain some undecidable language