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Rabin’s theorem

Theorem (Rabin 1969)

The problem:

input: An MSO formula ϕ

output: Is ϕ true in the full binary tree

is decidable.

⇒ decidability of LTL, CTL*, modal µ-calculus, ...

Question

Is there a probabilistic extension of Rabin’s theorem that subsumes
probabilistic logics?



Measure quantifier

• Henryk Michalewski and Matteo Mio. Measure quantifier in
monadic second order logic, LFCS, 2016.

∀X Φ(X) ≡ Φ(X) holds for all sets of nodes X

+

a new quantifier ≡
Φ(X) holds almost surely for a

randomly chosen set of nodes X
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∇π Φ(π)
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Definition: ∇ quantifier

∇π Φ(π)

III

There exists a measurable set of branches Π such that

P[Π] = 1 and every π ∈ Π satisfies Φ(π)
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Weak MSO+∇

X, Y, Z, . . . range over finite sets

Theorem (Bojańczyk 2016)

For every formula
compute−−−−→ equivalent suitable automaton

Theorem (Bojańczyk, K, Gimbert 2017)

Emptiness of this automaton is decidable

Corollary

Weak MSO+∇ is decidable
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MSO+∇ is undecidable

- Independently and in parallel:

Raphaël Berthon, Emmanuel Filiot, Shibashis Guha, Bastien Maubert, Aniello
Murano, Laureline Pinault, Jean-François Raskin, and Sasha Rubin. Monadic
second-order logic with path-measure quantifier is undecidable.
https://arxiv.org/abs/1901.04349

A certain automaton has undecidable emptiness
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I(π) is eventually constant:

I(π) = 2, 4, 1, 7,

only 5︷ ︸︸ ︷
5, 5, 5, . . .

Theorem
There is a formula ϕ(X,Y ) of MSO+∇ which is true if and only if

P[I is eventually constant] = 1

for some family of intervals I (that is unique if it exists) where

X = source(I) Y = target(I).
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Lemma
MSO+∇ can express

P[lim inf I < ∞] > 0.

(∗) there exists I ′ ⊆ I such that

P
[

I ′ io︸ ︷︷ ︸
a branch visits
sources of I′

infinitely often

]
> 0

and all K ⊆ I ′ satisfy

P
[
K io ⇒ target(K) io

]
= 1.
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P[lim inf I < ∞] > 0 ⇒
{
∃ I′ ⊆ I . P[I′ io] > 0

∀ K ⊆ I′ . P[K io ⇒ target(K) io] = 1

By countable additivity of measures:

∃n ∈ N P[lim inf I = n] > 0
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• take some set of operations under which REG are closed
• prove that any family of languages F ⊃ REG closed under such

operations must contain some undecidable language
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