$\mathrm{MSO}+\nabla$ is undecidable

Mikołaj Bojańczyk Edon Kelmendi Michał Skrzypczak

University of Warsaw

$$
\exists X \exists y \forall x(y>x) \Rightarrow(x \in X)
$$

Monadic Second Order Logic on Trees

Quantify over sets of nodes

Monadic Second Order Logic on Trees

Rabin's theorem

Theorem (Rabin 1969)

The problem:
input: An MSO formula ϕ
output: Is ϕ true in the full binary tree
is decidable.
\Rightarrow decidability of LTL, CTL*, modal μ-calculus, ...

Question

Is there a probabilistic extension of Rabin's theorem that subsumes probabilistic logics?

Measure quantifier

- Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

$$
\forall X \Phi(X) \equiv \Phi(X) \text { holds for all sets of nodes } X
$$

Measure quantifier

- Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

$$
\begin{aligned}
& \forall X \Phi(X) \equiv \Phi(X) \text { holds for all sets of nodes } X \\
&+ \\
& \text { a new quantifier } \equiv \Phi(X) \text { holds almost surely for a } \\
& \quad \text { randomly chosen set of nodes } X
\end{aligned}
$$

An attempt

independent coin throw for every node

An attempt

independent coin throw for every node

An attempt

independent coin throw for every node

An attempt

independent coin throw for every node

An attempt

independent coin throw for every node

An attempt

independent coin throw for every node

An attempt

independent coin throw for every node

- $\in X$

An attempt

independent coin throw for every node

\Rightarrow undecidable

A branch quantifier

- Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

$$
\begin{aligned}
\forall X \Phi(X) & \equiv \Phi(X) \text { holds for all } X \\
& + \\
\text { a new quantifier } & \equiv \begin{array}{c}
\Phi(\pi) \text { holds almost surely for a } \\
\text { randomly chosen branch } \pi
\end{array}
\end{aligned}
$$

A branch quantifier

- Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic, LFCS, 2016.

$$
\begin{aligned}
& \forall X \Phi(X) \equiv \Phi(X) \text { holds for all } X \\
&+ \\
& \nabla \pi \Phi(\pi) \equiv \Phi(\pi) \text { holds almost surely for a } \\
& \quad \text { randomly chosen branch } \pi
\end{aligned}
$$

A branch quantifier

independent coin throw to choose a child at every step

A branch quantifier

independent coin throw to choose a child at every step

A branch quantifier

independent coin throw to choose a child at every step

A branch quantifier

independent coin throw to choose a child at every step

Example: probability measure

$$
\mathbb{P}[\text { pass through } \bigcirc]=\frac{1}{8}
$$

Example: probability measure

Definition: ∇ quantifier

$\nabla \pi \Phi(\pi)$

III
$\Phi(\pi)$ holds almost surely for a randomly chosen branch π

Definition: ∇ quantifier

$\nabla \pi \Phi(\pi)$

III

There exists a measurable set of branches Π such that

$$
\mathbb{P}[\Pi]=1 \quad \text { and } \quad \text { every } \pi \in \Pi \text { satisfies } \Phi(\pi)
$$

Example

$$
\begin{aligned}
& \text { every node has a descendant in } X \\
& \exists X\left\{\begin{array}{l}
\forall x \exists y \quad(y \geq x \wedge y \in X) \\
\neg \nabla \pi(\exists x \quad x \in \pi \wedge x \in X)
\end{array}\right. \\
& \text { with nonzero probability } X \text { is avoided }
\end{aligned}
$$

Example: formula holds

$\exists X\left\{\begin{array}{l}\text { every node has a descendant in } X \\ \text { with nonzero probability } X \text { is avoided }\end{array}\right.$

Example: formula holds

$\exists X\left\{\begin{array}{l}\text { every node has a descendant in } X \\ \text { with nonzero probability } X \text { is avoided }\end{array}\right.$

Example: formula holds

$\exists X\left\{\begin{array}{l}\text { every node has a descendant in } X \\ \text { with nonzero probability } X \text { is avoided }\end{array}\right.$

Example: formula holds

$\exists X\left\{\begin{array}{l}\text { every node has a descendant in } X \\ \text { with nonzero probability } X \text { is avoided }\end{array}\right.$

Example: formula holds

$\exists X\left\{\begin{array}{l}\text { every node has a descendant in } X \\ \text { with nonzero probability } X \text { is avoided }\end{array}\right.$

Example: formula holds

$\exists X\left\{\begin{array}{l}\text { every node has a descendant in } X \\ \text { with nonzero probability } X \text { is avoided }\end{array}\right.$

Example: formula holds

$\exists X\left\{\begin{array}{l}\text { every node has a descendant in } X \\ \text { with nonzero probability } X \text { is avoided }\end{array}\right.$

Weak MSO + ∇

X, Y, Z, \ldots range over finite sets

Theorem (Bojańczyk 2016)

For every formula $\xrightarrow{\text { compute }}$ equivalent suitable automaton
Theorem (Bojańczyk, K, Gimbert 2017)
Emptiness of this automaton is decidable

Corollary

Weak $M S O+\nabla$ is decidable

Main theorem

Theorem
$M S O+\nabla$ is undecidable

Main theorem

Theorem

$M S O+\nabla$ is undecidable

- Independently and in parallel:

Raphaël Berthon, Emmanuel Filiot, Shibashis Guha, Bastien Maubert, Aniello Murano, Laureline Pinault, Jean-François Raskin, and Sasha Rubin. Monadic second-order logic with path-measure quantifier is undecidable. https://arxiv.org/abs/1901.04349

A certain automaton has undecidable emptiness

Families of Intervals

Proof: $\mathrm{MSO}+\nabla$ can express some asymptotic counting property.

Families of Intervals

Proof: $\mathrm{MSO}+\nabla$ can express some asymptotic counting property. interval

$$
\{z: x \leq z \leq y\}
$$

Families of Intervals

Proof: $\mathrm{MSO}+\nabla$ can express some asymptotic counting property. interval
$\left\{\begin{array}{l}x-\text { source } \\ y-\text { target }\end{array}\right.$

$$
\{z: x \leq z \leq y\}
$$

Families of Intervals

Proof: $\mathrm{MSO}+\nabla$ can express some asymptotic counting property.

Families of Intervals

Proof: $\mathrm{MSO}+\nabla$ can express some asymptotic counting property.

Families of Intervals

Proof: MSO $+\nabla$ can express some asymptotic counting property.

$\mathcal{I}(\pi)$ is eventually constant:

$$
\mathcal{I}(\pi)=2,4,1,7, \overbrace{5,5,5, \ldots}^{\text {only } 5}
$$

$$
\begin{aligned}
& \mathcal{I}(\pi) \text { is eventually constant: } \\
& \mathcal{I}(\pi)=2,4,1,7, \overbrace{5,5,5, \ldots}^{\text {only } 5}
\end{aligned}
$$

Theorem

There is a formula $\phi(X, Y)$ of $M S O+\nabla$ which is true if and only if

$$
\mathbb{P}[\mathcal{I} \text { is eventually constant }]=1
$$

for some family of intervals \mathcal{I} (that is unique if it exists) where

$$
X=\operatorname{source}(\mathcal{I}) \quad Y=\operatorname{target}(\mathcal{I}) .
$$

Counting

two counters given by \mathcal{I}_{1} and \mathcal{I}_{2} both eventually constant a.s

Counting

two counters given by \mathcal{I}_{1} and \mathcal{I}_{2}

 both eventually constant a.scompare for equality by taking the union and asking eventually constant a.s

Counting

two counters given by \mathcal{I}_{1} and \mathcal{I}_{2}

 both eventually constant a.scompare for equality by taking the union and asking eventually constant a.s

©encode runs of a Minsky machine

Eventually constant property

$$
\mathbb{P}[\mathcal{I} \text { is eventually constant }]=1
$$

is asymptotic in two ways, it allows:

1. a set of branches with measure zero where the property does not hold
2. finite delay before the constant tail starts

Eventually constant property

$$
\mathbb{P}[\mathcal{I} \text { is eventually constant }]=1
$$

is asymptotic in two ways, it allows:

1. a set of branches with measure zero where the property does not hold
2. finite delay before the constant tail starts
```
we can count in a very weak way
```


Proof

express boundedness properties of \mathcal{I}

Proof

express boundedness properties of \mathcal{I}
express \mathcal{I} is eventually constant

Proof

express boundedness properties of \mathcal{I} use techniques from $\mathrm{MSO}+\mathrm{U}$

Mikołaj Bojańczyk, Paweł Parys, and Szymon Toruńczyk. The MSO+U Theory of $(\mathbb{N},<)$ Is Undecidable. STACS 2016

Mikołaj Bojańczyk, Laure Daviaud, Bruno Guillon, Vincent Penelle, and A. V. Sreejith
Undecidability of MSO+ultimately periodic, 2018
express \mathcal{I} is eventually constant

Back to the Example

Back to the Example

Lemma

$M S O+\nabla$ can express

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 .
$$

Lemma

$M S O+\nabla$ can express

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0
$$

(*) there exists $\mathcal{I}^{\prime} \subseteq \mathcal{I}$ such that

$$
\mathbb{P}[\underbrace{\mathcal{I}^{\prime} \text { io }}_{\substack{\text { a branch visits } \\ \text { sourcesoof } \\ \text { infinitely often }}}]>0
$$

and all $\mathcal{K} \subseteq \mathcal{I}^{\prime}$ satisfy

$$
\mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1 .
$$

Proof of Lemma

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 \Rightarrow\left\{\begin{array}{l}
\exists \mathcal{I}^{\prime} \subseteq \mathcal{I} \cdot \mathbb{P}\left[\mathcal{I}^{\prime} \text { io }\right]>0 \\
\forall \mathcal{K} \subseteq \mathcal{I}^{\prime} \cdot \mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1
\end{array}\right.
$$

By countable additivity of measures:

$$
\exists n \in \mathbb{N} \quad \mathbb{P}[\liminf \mathcal{I}=n]>0
$$

Proof of Lemma

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 \Rightarrow\left\{\begin{array}{l}
\exists \mathcal{I}^{\prime} \subseteq \mathcal{I} \cdot \mathbb{P}\left[\mathcal{I}^{\prime} \text { io }\right]>0 \\
\forall \mathcal{K} \subseteq \mathcal{I}^{\prime} \cdot \mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1
\end{array}\right.
$$

Say
$\mathbb{P}[\lim \inf \mathcal{I}=5]>0$

Proof of Lemma

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 \Rightarrow\left\{\begin{array}{l}
\exists \mathcal{I}^{\prime} \subseteq \mathcal{I} \cdot \mathbb{P}\left[\mathcal{I}^{\prime} \text { io }\right]>0 \\
\forall \mathcal{K} \subseteq \mathcal{I}^{\prime} \cdot \mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1
\end{array}\right.
$$

Say

$$
\mathbb{P}[\lim \inf \mathcal{I}=5]>0
$$

Take \mathcal{I}^{\prime} to be intervals of length exactly 5

Proof of Lemma

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 \Leftarrow\left\{\begin{array}{l}
\exists \mathcal{I}^{\prime} \subseteq \mathcal{I} \cdot \mathbb{P}\left[\mathcal{I}^{\prime} \text { io }\right]>0 \\
\forall \mathcal{K} \subseteq \mathcal{I}^{\prime} \cdot \mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1
\end{array}\right.
$$

An interval is a record breaker if it is strictly longer than all of its ancestors

Proof of Lemma

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 \Leftarrow\left\{\begin{array}{l}
\exists \mathcal{I}^{\prime} \subseteq \mathcal{I} \cdot \mathbb{P}\left[\mathcal{I}^{\prime} \text { io }\right]>0 \\
\forall \mathcal{K} \subseteq \mathcal{I}^{\prime} \cdot \mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1
\end{array}\right.
$$

An interval is a record breaker if it is strictly longer than all of its ancestors Take \mathcal{K} to be the record breakers of \mathcal{I}^{\prime}.

Proof of Lemma

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 \Leftarrow\left\{\begin{array}{l}
\exists \mathcal{I}^{\prime} \subseteq \mathcal{I} \cdot \mathbb{P}\left[\mathcal{I}^{\prime} \text { io }\right]>0 \\
\forall \mathcal{K} \subseteq \mathcal{I}^{\prime} \cdot \mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1
\end{array}\right.
$$

An interval is a record breaker if it is strictly longer than all of its ancestors Take \mathcal{K} to be the record breakers of \mathcal{I}^{\prime}.

Proposition. $\mathbb{P}[\operatorname{target}(\mathcal{K})$ io $]=0$. (as in example; \mathcal{K} grows at least linearly)

Proof of Lemma

$$
\mathbb{P}[\lim \inf \mathcal{I}<\infty]>0 \Leftarrow\left\{\begin{array}{l}
\exists \mathcal{I}^{\prime} \subseteq \mathcal{I} \cdot \mathbb{P}\left[\mathcal{I}^{\prime} \text { io }\right]>0 \\
\forall \mathcal{K} \subseteq \mathcal{I}^{\prime} \cdot \mathbb{P}[\mathcal{K} \text { io } \Rightarrow \operatorname{target}(\mathcal{K}) \text { io }]=1
\end{array}\right.
$$

An interval is a record breaker if it is strictly longer than all of its ancestors

Take \mathcal{K} to be the record breakers of \mathcal{I}^{\prime}.

Proposition. $\mathbb{P}[\operatorname{target}(\mathcal{K})$ io $]=0$. (as in example; \mathcal{K} grows at least linearly)
From the hypothesis: $\mathbb{P}[\mathcal{K}$ io $]=0$ and $\mathbb{P}\left[\limsup \mathcal{I}^{\prime}=\infty\right]=0$.

Proof

express boundedness properties of $\mathcal{I} \checkmark$

express \mathcal{I} is eventually constant

$$
\begin{array}{lccccccccccc}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20 & \cdots \\
g=10 & 24 & 42 & 13 & 7 & 1 & 0 & 0 & 2 & 5 & 5 & \cdots
\end{array}
$$

$$
\left.\begin{array}{l}
f=2 \\
f
\end{array} \begin{array}{lllllllcccc}
7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20 \cdots \\
g=10 & 24 & 42 & 13 & 7 & 1 & 0 & 0 & 2 & 5 & 5
\end{array}\right] .
$$

$$
\begin{aligned}
& g=10 \quad 24 \quad 42 \quad 13 \quad 7 \quad 1 \quad 0 \quad 0 \quad 2 \quad 5 \quad 5 \cdots \\
& f \sim g \equiv \forall \text { sets of positions }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20 & \cdots
\end{array} \\
& g=10 \quad 24 \quad 42 \quad 13 \quad 7 \quad 1 \quad 0 \quad 0 \quad 2 \quad 5 \quad 5 \cdots \\
& \begin{array}{llllll}
7 & 10 & 15 & 29 & 20 & \cdots
\end{array} \text { is bounded } \\
& f \sim g \equiv \forall \text { sets of positions } \\
& \text { if and only if } \\
& \begin{array}{llllll}
24 & 13 & 7 & 2 & 5 & \cdots
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllllll}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20
\end{array} \\
& g=10 \quad 24 \quad 42 \quad 13 \quad 7 \quad 1 \quad 0 \quad 0 \quad 2 \quad 5 \quad 5 \cdots \\
& \begin{array}{lllllll}
7 & 10 & 15 & 29 & 20 & \cdots & \text { is bounded }
\end{array} \\
& f \sim g \equiv \forall \text { sets of positions } \quad \text { if and only if } \\
& \begin{array}{llllll}
24 & 13 & 7 & 2 & 5 & \cdots
\end{array} \text { is bounded }
\end{aligned}
$$

$$
F=(2,3,4)(0,20,4)(1,1,4)(43,12,14)(2,19,17)(9,11,99) \cdots
$$

$$
\begin{aligned}
& \begin{array}{llllllllllll}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20 & \cdots
\end{array} \\
& g=10 \quad 24 \quad 42 \quad 13 \quad 7 \quad 1 \quad 0 \quad 0 \quad 2 \quad 5 \quad 5 \cdots \\
& \begin{array}{lllllll}
7 & 10 & 15 & 29 & 20 & \cdots & \text { is bounded }
\end{array} \\
& f \sim g \equiv \forall \text { sets of positions } \quad \text { if and only if } \\
& \begin{array}{llllll}
24 & 13 & 7 & 2 & 5 & \cdots
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
F=(\underline{2}, 3,4)(0, \underline{20}, 4)(\underline{1}, 1,4)(43,12, \underline{14})(\underline{2}, 19,17)(9, \underline{11}, 99) \cdots \\
f \in F
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllll}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20 & \cdots
\end{array} \\
& g=10 \quad 24 \quad 42 \quad 13 \quad 7 \quad 1 \quad 0 \quad 0 \quad 2 \quad 5 \quad 5 \cdots \\
& \begin{array}{lllllll}
7 & 10 & 15 & 29 & 20 & \cdots & \text { is bounded }
\end{array} \\
& f \sim g \equiv \forall \text { sets of positions if and only if } \\
& \begin{array}{llllll}
24 & 13 & 7 & 2 & 5 & \cdots
\end{array} \text { is bounded }
\end{aligned}
$$

$$
\begin{gathered}
F=(\underline{2}, 3,4)(0, \underline{20}, 4)(\underline{1}, 1,4)(43,12, \underline{14})(\underline{2}, 19,17)(9, \underline{11}, 99) \cdots \\
f \in F
\end{gathered}
$$

F is an asymptotic mix of $G:=$

$$
\forall f \in F \quad \exists g \in G \quad f \sim g
$$

$$
\begin{array}{lllllllllcl}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20
\end{array} \cdots
$$

$\begin{array}{lllllll}7 & 10 & 15 & 29 & 20 & \cdots & \text { is bounded }\end{array}$ if and only if $\begin{array}{llllll}24 & 13 & 7 & 2 & 5 & \cdots\end{array}$ is bounded

$$
F=(\underline{2}, 3,4)(0, \underline{20}, 4)(\underline{1}, 1,4)(43,12, \underline{14})(\underline{2}, 19,17)(9, \underline{1}, 99) \cdots
$$

$$
f \in F \quad \quad f=220114211
$$

F is an asymptotic mix of $G:=$

$$
\forall f \in F \quad \exists g \in G \quad f \sim g
$$

[^0]Lemma. For all n there is F of dimension n that is not an asymptotic mix of any G of dimension $<n$.

$$
\begin{array}{lllllllllcl}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20
\end{array} \cdots
$$

$\begin{array}{lllllll}7 & 10 & 15 & 29 & 20 & \cdots & \text { is bounded }\end{array}$ if and only if $\begin{array}{llllll}24 & 13 & 7 & 2 & 5 & \cdots\end{array}$ is bounded

$$
F=(\underline{2}, 3,4)(0, \underline{20}, 4)(\underline{1}, 1,4)(43,12, \underline{14})(\underline{2}, 19,17)(9, \underline{1}, 99) \cdots
$$

$$
f \in F \quad \quad f=220114211
$$

F is an asymptotic mix of $G:=$

$$
\forall f \in F \quad \exists g \in G \quad f \sim g
$$

[^1]Lemma. For all n there is F of dimension n that is not an asymptotic mix of any G of dimension $<n$.

$$
\begin{array}{lllllllllcl}
f=2 & 7 & 9 & 10 & 15 & 0 & 4 & 18 & 29 & 105 & 20
\end{array} \cdots
$$

$\begin{array}{lllllll}7 & 10 & 15 & 29 & 20 & \cdots & \text { is bounded }\end{array}$ if and only if $\begin{array}{llllll}24 & 13 & 7 & 2 & 5 & \cdots\end{array}$

$$
F=(\underline{2}, 3,4)(0, \underline{20}, 4)(\underline{1}, 1,4)(43,12, \underline{14})(\underline{2}, 19,17)(9, \underline{1}, 99) \cdots
$$

$$
f \in F \quad \quad f=220114211
$$

F is an asymptotic mix of $G:=$

$$
\forall f \in F \quad \exists g \in G \quad f \sim g
$$

[^2]Lemma. For all n there is F of dimension n that is not an asymptotic mix of any G of dimension $<n$.

Encode (3, 0, 2, 1) by

Encode (3, 0, 2, 1) by

Encode (3, 0, 2, 1) by

$$
\mathcal{I} \quad \mathcal{J}
$$

3

Encode (3, 0, 2, 1) by

$$
\mathcal{I} \quad \mathcal{J}
$$

Length of $\mathcal{I}=\operatorname{dim}=4$

Conclusion

Question

Is there any quantifier that can be added to MSO while retaining decidability?

Conclusion

Question

Is there any quantifier that can be added to MSO while retaining decidability?

- take some set of operations under which REG are closed
- prove that any family of languages $\mathcal{F} \supset$ REG closed under such operations must contain some undecidable language

[^0]: Mikolaj Bojańczyk, Pawel Parys, and Szymon Toruńczyk.
 The MSO+U Theory of ($\mathbb{N},<$) Is Undecidable. STACS 2016

[^1]: Mikolaj Bojańczyk, Pawel Parys, and Szymon Toruńczyk.
 The MSO+U Theory of ($\mathbb{N},<$) Is Undecidable. STACS 2016

[^2]: Mikolaj Bojańczyk, Pawel Parys, and Szymon Toruńczyk.
 The MSO+U Theory of ($\mathbb{N},<$) Is Undecidable. STACS 2016

