The Density of Positive Entries of a Linear Recurrence

Max Planck Institute for Software Systems Saarbrücken, Germany

Edon Kelmendi

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else **Region** B end if end while

arbitrary number of variables ranging over integers

• linear updates

polynomial inequality

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $\triangleright x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else **Region** B end if end while

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ \triangleright $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else **Region** B end if end while

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $\triangleright z \leftarrow 5z$ if y + z > 0 then Region A else **Region B** end if end while

$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ $\blacktriangleright \text{ if } y + z > 0 \text{ then}$ Region A else **Region B** end if end while

Decision questions: 1. Is Region A reached?

- (Is there at least one ?)

2. Is Region A reached infinitely often? (Are there infinitely many ?)

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do

> $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if

end while

Decision questions:

- 1. Is Region A reached?
 - (Is there at least one ?)
 - Known as the **positivity problem**; at least as hard as Skolem's problem
- 2. Is Region A reached infinitely often?
 - (Are there infinitely many ?)
 - Known as the ultimate positivity problem; also open & difficult

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do

 $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if end while

Decision questions:

- 1. Is Region A reached?
 - (Is there at least one ?)
 - Known as the **positivity problem**; at least as hard as Skolem's problem
- 2. Is Region A reached infinitely often?
 - (Are there infinitely many ?)
 - Known as the ultimate positivity problem; also open & difficult
- In this paper:

3. How much more frequent are compared to ?

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do

 $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if

end while

Set of

- 1. Is it empty?
- 2. Is it infinite?
- 3. How dense is it?

Decision questions:

- 1. Is Region A reached?
 - (Is there at least one ?)
 - Known as the **positivity problem**; at least as hard as Skolem's problem
- 2. Is Region A reached infinitely often?
 - (Are there infinitely many ?)
 - Known as the ultimate positivity problem; also open & difficult

In this paper:

3. How much more frequent are compared to ?

Number of in first *n* entries

 $n \in \mathbb{N}$

 $\boldsymbol{\mathcal{N}}$

Jason P Bell and Stefan Gerhold. On the positivity set of a linear recurrence sequence. *Israel Journal of Mathematics*, 157(1):333–345, 2007.

Called **density** denoted by \mathcal{D} .

Number of \square in first *n* entries

\boldsymbol{n}

Exists due to:

Theorem. $\mathcal{D} = 0$? is decidable.

- When the update matrix is diagonalisable: $\mathcal{D} = 0 \quad \Leftrightarrow \quad \text{finitely many} \quad \blacksquare$.
- **Theorem.** \mathcal{D} can be computed to arbitrary additive precision.

Theorem. $\mathcal{D} \in \mathbb{Q}$? is decidable, when there are at most three dominant eigenvalues.

Theorems

(so is $\mathcal{D} = 1?$)

Applying the theorems to the example

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if end while

How frequently is Region A entered?

Applying the theorems to the example

 $x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$ while true do $x \leftarrow 4x + 3y$ $y \leftarrow 4y - 3x$ $z \leftarrow 5z$ if y + z > 0 then Region A else Region B end if end while

How frequently is Region A entered?

$0.732279\dots=rac{\cos^{-1}(-2/3)}{}$ π

$$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$$

while true do
$$x \leftarrow 4x + 3y$$

$$y \leftarrow 4y - 3x$$

$$z \leftarrow 5z$$

if $y + z > 0$ then
Region A
else
Region B
end if
end while

$$4) \cdot \begin{pmatrix} 4 & -3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}^{n} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} > 0$$

y+z in the nth loop iteration
$$5/5 \quad 0 \\ 5 \quad 0 \\ 0 \quad 1 \end{pmatrix}^{n} = 5^{n} \begin{pmatrix} \cos n\varphi & \sin n\varphi & 0 \\ \sin n\varphi & \cos n\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$$

while true do
 $x \leftarrow 4x + 3y$
 $y \leftarrow 4y - 3x$
 $z \leftarrow 5z$
if $y + z > 0$ then
Region A
else
Region B
end if
end while

$$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$$

while true do
 $x \leftarrow 4x + 3y$
 $y \leftarrow 4y - 3x$
 $z \leftarrow 5z$
if $y + z > 0$ then
Region A
else
Region B
end if
end while

$$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$$

while true do
 $x \leftarrow 4x + 3y$
 $y \leftarrow 4y - 3x$
 $z \leftarrow 5z$
if $y + z > 0$ then
Region A
else
Region B
end if
end while

$$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$$

while true do
 $x \leftarrow 4x + 3y$
 $y \leftarrow 4y - 3x$
 $z \leftarrow 5z$
if $y + z > 0$ then
Region A
else
Region B
end if
end while

$$x \leftarrow 0; y \leftarrow 6; z \leftarrow 4$$

while true do
$$x \leftarrow 4x + 3y$$
$$y \leftarrow 4y - 3x$$
$$z \leftarrow 5z$$
if $y + z > 0$ then
Region A
else
Region B
end if
end while

For the general case we make crucial use of:

J. W. S. Cassels. An Introduction To Diophantine Approximation. Cambridge University Press, 1959.

• Koiran's theorem

Pascal Koiran. Approximating the volume of definable sets. In *Proceedings* of IEEE 36th Annual Foundations of Computer Science, pages 134–141. IEEE, 1995.

to approximate the volume of certain constructible sets.

• A higher dimensional version of Weyl's theorem found in:

Open Problem

Can we decide whether D > 1/2 ?

A priori can't use the approximation algorithm as \mathcal{D} is not algebraic in general.

Theorem. The problem is solved in the case when there are at most three dominant eigenvalues by deciding whether:

 $\mathcal{D} \in \mathbb{O}?$

Thank you