The Density of Positive Entries of a Linear Recurrence

Edon Kelmendi
Max Planck Institute for Software Systems
Saarbrücken, Germany
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4$
while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \longrightarrow \bullet$ arbitrary number of variables while true do ranging over integers
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

- $x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4$
while true do
$x \leftarrow 4 x+3 y$
- $y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$\triangleright z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$

- if $y+z>0$ then

Region A
else
Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
\rightarrow Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
\rightarrow Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
\rightarrow Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
\begin{aligned}
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region A } \\
& \text { else }
\end{aligned}
$$

- Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
\begin{aligned}
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } A \\
& \text { else }
\end{aligned}
$$

- Region B end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A
else
Region B
end if
end while

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

$$
\text { if } y+z>0 \text { then }
$$

Region A
else

Region B end if end while

Decision questions:

1. Is Region A reached?
(Is there at least one \square ?)

- Known as the positivity problem; at least as hard as Skolem's problem

2. Is Region A reached infinitely often?
(Are there infinitely many \square ?)

- Known as the ultimate positivity problem; also open \& difficult

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

$$
\text { if } y+z>0 \text { then }
$$

Region A
else
Region B end if end while

Decision questions:

1. Is Region A reached?
(Is there at least one \square ?)

- Known as the positivity problem; at least as hard as Skolem's problem

2. Is Region A reached infinitely often?
(Are there infinitely many \square ?)

- Known as the ultimate positivity problem; also open \& difficult

In this paper:

3. How much more frequent are \square compared to \square ?

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do

$$
x \leftarrow 4 x+3 y
$$

$$
y \leftarrow 4 y-3 x
$$

$$
z \leftarrow 5 z
$$

$$
\text { if } y+z>0 \text { then }
$$

Region A
else
Region B
end if end while

Set of

1. Is it empty?
2. Is it infinite?
3. How dense is it?

Decision questions:

1. Is Region A reached?
(Is there at least one \square ?)

- Known as the positivity problem; at least as hard as Skolem's problem

2. Is Region A reached infinitely often?
(Are there infinitely many
?)

- Known as the ultimate positivity problem; also open \& difficult

In this paper:

3. How much more frequent are \square compared to \square ?

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then
Region A else

Number of \square in first n entries
$n \in \mathbb{N}$
Region B end if end while
$x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4$ while true do $x \leftarrow 4 x+3 y$ $y \leftarrow 4 y-3 x$ $z \leftarrow 5 z$ if $y+z>0$ then Region A else
Region B end if end while

Number of \square in first n entries
\lim

Exists due to:

Jason P Bell and Stefan Gerhold. On the positivity set of a linear recurrence sequence. Israel fournal of Mathematics, 157(1):333-345, 2007.

Called density denoted by \mathcal{D}.

Theorems

Theorem. $\mathcal{D}=0$? is decidable. \quad (so is $\mathcal{D}=1$?)
When the update matrix is diagonalisable: $\mathcal{D}=0 \quad \Leftrightarrow \quad$ finitely many \square.
Theorem. \mathcal{D} can be computed to arbitrary additive precision.

Theorem. $\mathcal{D} \in \mathbb{Q}$? is decidable,
when there are at most three dominant eigenvalues.

Applying the theorems to the example

```
x\leftarrow0;y\leftarrow6;z\leftarrow4
while true do
    x\leftarrow4x+3y
    y\leftarrow4y-3x
    z\leftarrow5z
    if y+z>0 then
        Region A
    else
        Region B
    end if
end while
```


Applying the theorems to the example

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then Region A else
Region B
end if
end while

How frequently is Region A entered?

$$
0.732279 \cdots=\underline{\cos ^{-1}(-2 / 3)}
$$

π

How does the algorithm work on the example?

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then Region A else
Region B
end if
end while

How does the algorithm work on the example?

$$
x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4
$$

while true do
$x \leftarrow 4 x+3 y$
$y \leftarrow 4 y-3 x$
$z \leftarrow 5 z$
if $y+z>0$ then Region A else
Region B
end if end while

$5^{n}\left(\begin{array}{ccc}4 / 5 & -3 / 5 & 0 \\ 3 / 5 & 4 / 5 & 0 \\ 0 & 0 & 1\end{array}\right)^{n}=5^{n}\left(\begin{array}{ccc}\cos n \varphi & \sin n \varphi & 0 \\ \sin n \varphi & \cos n \varphi & 0 \\ 0 & 0 & 1\end{array}\right)$
Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

How does the algorithm work on the example?

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } \mathrm{A} \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

How does the algorithm work on the example?

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } \mathrm{A} \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

How does the algorithm work on the example?

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } \mathrm{A} \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

How does the algorithm work on the example?

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } \mathrm{A} \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

How does the algorithm work on the example?

Rotation in the first two coordinates by $\varphi=\cos ^{-1} 4 / 5$

$$
\begin{aligned}
& x \leftarrow 0 ; y \leftarrow 6 ; z \leftarrow 4 \\
& \text { while true do } \\
& x \leftarrow 4 x+3 y \\
& y \leftarrow 4 y-3 x \\
& z \leftarrow 5 z \\
& \text { if } y+z>0 \text { then } \\
& \text { Region } A \\
& \text { else } \\
& \text { Region } \mathrm{B} \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

How does the algorithm work on the example?

$\varphi=\cos ^{-1} 4 / 5$
How frequently are we on the red arc?

Theorem. (Weyl) The frequency is proportional to the length of the arc.

$$
\mathcal{D}=\frac{\text { length of }}{2 \pi}=\frac{\cos ^{-1}(-2 / 3)}{\pi}=0.732278 \ldots
$$

For the general case we make crucial use of:

- A higher dimensional version of Weyl's theorem found in:
J. W. S. Cassels. An Introduction To Diophantine Approximation. Cambridge University Press, 1959.
- Koiran's theorem

Pascal Koiran. Approximating the volume of definable sets. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 134-141. IEEE, 1995.
to approximate the volume of certain constructible sets.

Open Problem

Can we decide whether $\mathcal{D}>1 / 2$?

A priori can't use the approximation algorithm as \mathcal{D} is not algebraic in general.

Theorem. The problem is solved in the case when there are at most three dominant eigenvalues by deciding whether:

$$
\mathcal{D} \in \mathbb{Q} ?
$$

Thank you

