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Are there decidable extensions?

∙ (R. M. Robinson, 1958) mso extended with f (n) = 2n is undecidable.

Considered even before decidability of weak mso by Büchi, Elgot, Trakhtenbrot, 1960, 1961.

(C. Elgot, M. Rabin, 1966), (D. Siefkes, 1971), (W. Thomas, 1975), . . .
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Extending mso

1. Add a function f ∶ ℕ → ℕ,

2. Add a single unary predicate (i.e. set)W ⊆ ℕ

3. Add a quantifier Q(X) . Φ(X)

4. Add a language L ⊂ Σ
𝜔



Adding unary predicates (sets)

W ∶= {n2 ∶ n ∈ ℕ}

Problem

input: Non-deterministic Büchi automaton
output: Does acceptW ?
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There is a computable C ∈ ℕ such that:

an1ban2ban3ban4b⋯ is accepted by
iff

an1 mod Cban2 mod Cban3 mod Cban4 mod Cb⋯ is accepted by

(in case of W ) the latter is of the form
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Adding unary predicates (sets)

squares, cubes, etc., powers of two, powers of three, etc., factorial

Thue-Morse word,all almost-periodic words (Muchnik, Semenov, Ushakov, 2003)

(A. Semenov 1984) and (Rabinovich, Thomas, 2006)

Characterisations of W with decidable mso theory.

Cannot always be easily applied



Adding unary predicates (sets)

W ∶= {n ∶ n is prime}

Consider the mso formula

∃ infinite V ⊂ W ∀x x ∈ V ⇒ (x + 2) ∈ W

twin prime conjecture
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Adding a quantifier

Express asymptotic properties (more than just “a infinitely often”)

∙ (Michalewski, Mio, 2015)

A quantifier saying:

“the formula holds for sets with full measure” undecidable

∙ (Mio, Skrzypczak, Michalewski, 2017)

A quantifier related to Baire category ⊆ mso



mso+u

(M. Bojańczyk 2004)

U X Φ(X)

formula Φ holds for arbitrary large sets X

∀n ∈ ℕ ∃X Φ(X) and |X | ≥ n.

∙ weak mso+u is decidable (M. Bojańczyk, 2011)

∙ but the full logic is not (M. Bojańczyk, P. Parys, S. Toruńczyk, 2016)
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L ⊆ {a, b, c}𝜔

w = abcacbabcbacabc⋯
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Adding a language (Examples)

∙ {(anbnc)𝜔 ∶ n ∈ ℕ} ,

∙ {uv𝜔 ∶ u, v ∈ Σ
∗
} ,

∙ {w ∶ distance between consec. b’s is unbounded} ≡mso+u

⋯ b
unbounded

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

aaa⋯ aaa b⋯



∙ Main Theorem

∙ Corollaries

∙ Proof



Main theorem

Theorem

For any non-regular L with a neutral letter, the theory of
mso+L is undecidable.

The letter 1 ∈ Σ is neutral if

w11w21⋯ ∈ L ⇔ w1w2 ⋯ ∈ L

for any w1,w2, … ∈ Σ
∗
.
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Squares

results in an undecidable logic



Corollaries

A class of languages  is a cone (or full-trio) if it is closed under:

∙ images under homomorphisms,

∙ inverse images under homomorphisms, and

∙ intersections with regular languages.

Examples: regular, context-free, recursively enumerable languages

Examples of faithful cones: context-sensitive, recursive languages

equivalently (Nivat’s theorem)

 is a cone if it is closed under:

∙ transductions (non-deterministic Büchi automaton with output)
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Corollaries

 is a cone if it is closed under:

∙ transductions (Büchi automaton with output)

Corollary

Any Boolean-closed cone , that contains a non-regular language, also contains the
whole arithmetic hierarchy.
I.e. for any L ⊆ Σ

∗ in the arithmetic hierarchy

{uv𝜔 ∶ u ∈ Σ
∗
, v ∈ L} ∈ .

For languages over finite words: (Zetzsche, Kuske, Lohrey, 2017).



For any Boolean-closed
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Proof

Fix L a non-regular language.

Recall:

U = {w ∈ {a, b}𝜔 ∶ distance between consecutive b’s is unbounded}

It suffices to show that:

U ∈ mso + L

How to express unboundedness of distances between b’s from the

non-regularity of L?
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An Observation

Theorem

A language K ⊆ Σ
𝜔 is 𝜔-regular if and only if there exists ∼⊆ Σ

∗
× Σ

∗ that is
∙ an equivalence relation with finite index,

such that for all sequences of finite words ui, u′i :

(

⋀

i∈{1,2}
ui ∼ u′i

)

⇒ u1u2 ∼ u′1u
′

2

(

⋀

i ∈ ℕ

ui ∼ u′i
)

⇒ ( u1u2 ⋯ ∈ K ⇔ u′1u
′

2 ⋯ ∈ K )
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An Observation

Theorem

If K is not 𝜔-regular, then there is no equivalence relation ∼ with finite index such
that for all sequences of finite words ui, u′i :
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∼ ∼ ∼ ∼ ⇔

n0, n1, n2, n3 ⋯ unbounded
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Congruence Game

Theorem

Duplicator wins the congruence game for u ⇔ u ∈ U .



u ∈ U ⇒ Duplicator wins the congruence game for u



u ∉ U ⇒ Spoiler wins the congruence game for u



We proved that

U = {w ∈ {a, b}𝜔 ∶ distance between consecutive b’s is unbounded}

is the set of arenas where Duplicator wins.



Theorem

If L is not 𝜔-regular and has a neutral letter then mso+L is undecidable.

Proof.

∙ Suffices to show that:

{u ∶ Duplicator wins the congruence game for u}

is expressible in mso +L.

∙ A family of intervals can be represented by two sets of positions:

X - the leftmost positions in intervals

Y - the rightmost positions in intervals

∙ For round (1) use ∀, for round (2) use ∃
∙ For rounds (3) and (4) color intervals by Σ ⧵ {1} and everything else by 1
∙ In round (5) quantify over subsets of intervals, and

∙ The winning condition in round (6) is checked by the predicate L.
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