EXTENSIONS OF w-REG

Edon Kelmendi

Jointly with: Mikotaj Bojaniczyk — Rafat Stefanski ~ Georg Zetzsche



MonNADIC SECOND ORDER THEORY OF (w, >)

1X Vy Ix XEX ANXx>Y



MonNADIC SECOND ORDER THEORY OF (w, >)

quantify over sets of positions

membership order

1X Vy 3Ix XEX ANXx>Y

quantify over positions



MonNADIC SECOND ORDER THEORY OF (w, >)

X
v 3
EE BN ENVUEEE EEEEE=caR

0 1 2 3 & 5 & 7 & 9 10 11 12 13 14 15

quantify over sers of positions

membership order

EIXVyEIx x€EX AXx>Yy

quantify over positions



MonNADIC SECOND ORDER THEORY OF (w, >)

X

HE BN EEZEEE BEEREE= s
membership order
0 1 2 3 4 5 & 7 & 9 10 11 12 13 14 15

EIXVyEIx x€EX AXx>Yy
there is always a red position to the right

quantify over positions



MonNADIC SECOND ORDER THEORY OF (w, >)
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there is always a red position to the right

X has infinite cardinality
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Mso theory of (w,>) is decidable.

Are there more expressive logics that are decidable?
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ARE THERE DECIDABLE EXTENSIONS?

* (R M. Robinson, 1958) MSO extended with f(n) = 2n is undecidable.
Considered even before decidability of weak mso by Biichi, Elgot, Trakhtenbrot, 1960, 1961.

(C. Elgot, M. Rabin, 1966), (D. Siefkes, 1971), (W. Thomas, 1975), ...

N J

"for most natural examples of functions or binary relations

the corresponding monadic second order theory is undecidable”



EXTENDING MSO

. Add a function f : N — NN,
. Add a single unary predicate (i.e. set) W C IN
. Add a quantifier Q(X) . ®(X)

. Add a language L C ¢



ADDING UNARY PREDICATES (SETS)

W :={n* : neN}
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ADDING UNARY PREDICATES (SETS)

PROBLEM

INPUT:  Non-deterministic Biichi automaton A
ouTpuT: Does A accept W?

decidable (C. Elgot, M. Rabin, 1966)

There is a computable C € N such that:

a"ba"ba™ba™b-- is accepted by A
iff

a™ mod Cba”2 mod Cbang mod Cbam mod Cb

(in case of W) the latter is of the form

vu

is accepted by A



ADDING UNARY PREDICATES (SETS)

squares, cubes, etc., powers of two, powers of three, etc., factorial

Thue-Morse word,all almost-periodic words (Muchnik, Semenov, Ushakov, 2003)

(A. Semenov 1984) and (Rabinovich, Thomas, 2006)
Characterisations of W with decidable mso theory.

Cannot always be easily applied
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ADDING UNARY PREDICATES (SETS)

W :={n : nis prime}

Consider the mso formula

Jinfinite VC W Vx xe V= (x+2)eW

twin prime conjecture



ADDING A QUANTIFIER

Express asymptotic properties (more than just “a infinitely often”)

*  (Michalewski, Mio, 2015)

A quantifier saying:

“the formula holds for sets with full measure” undecidable
*  (Mio, Skrzypczak, Michalewski, 2017)

A quantifier related to Baire category C mso
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MSO+U

(M. Bojanczyk 2004)
UX d(X)
formula @ holds for arbitrary large sets X

vneN 3X &(X)and [X| > n.

weak mMso+u is decidable (M. Bojarczyk, 2011)

but the full logic is not (M. Bojanczyk, P. Parys, S. Torunczyk, 2016)
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ADDING A LANGUAGE

Lc{a,b,c}”

w = abcacbabcbacabc -

Xa Xb

0 1z 3 4 5 « 7 3 9 10 11 12 13 14 15

Mso+L adds a second order predicate L

L(Xy Xp, X)) o wel



ADDING A LANGUAGE (EXAMPLES)

* {(a"b"c)” : neN},
c {w® : u,veX},
* {w : distance between consec. b’s is unbounded} =mso+u

unbounded

——
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MAIN THEOREM

THEOREM

For any non-regular L with a neutral letter, the theory of
mso+L is undecidable.

The letter 1 € X is neutral if
wilwp1:-- €L o wiw, - € L
for any wy, wy,... € ",
Xa Xb
EEEEEEEEEEEEEEEE . € ]
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SQUARES
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results in an undecidable logic



COROLLARIES

A class of languages L is a cone (or full-trio) if it is closed under:

* images under homomorphisms,

* inverse images under homomorphisms, and

* intersections with regular languages.
Examples: regular, context-free, recursively enumerable languages
Examples of faithful cones: context-sensitive, recursive languages
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A class of languages L is a cone (or full-trio) if it is closed under:

* images under homomorphisms,

* inverse images under homomorphisms, and

* intersections with regular languages.
Examples: regular, context-free, recursively enumerable languages
Examples of faithful cones: context-sensitive, recursive languages

equivalently (Nivat’s theorem)

L is a cone if it is closed under:
* transductions (non-deterministic Biichi automaton with output)
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COROLLARIES

L is a cone if it is closed under:

transductions (Biichi automaton with output)

COROLLARY

Any Boolean-closed cone L, that contains a non-regular language, also contains the
whole arithmetic hierarchy.
l.e. for any L C ¥* in the arithmetic hierarchy

{fuw® : ueX,vel}eL.

For languages over finite words: (Zetzsche, Kuske, Lohrey, 2017).
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* L contains the whole arithmetic hierarchy

L

complicated
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Proor

Fix L a non-regular language.
Recall:
U ={we{a b}’ : distance between consecutive b’s is unbounded}
It suffices to show that:
U € MSO + L

How to express unboundedness of distances between b’s from the
non-regularity of L?
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o /
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AN OBSERVATION

THEOREM
A language K C 2 is w-regular if and only if there exists ~C * x X* that is
* an equivalence relation with finite index,

such that for all sequences of finite words u;, u}:

( /\ u,-~u§) = uup ~ ujul)

i€{1,2}

</\ u,-~u§> = (wmu €K & ujuh-~€K)

ieN

ex* ex” ex* ex*

-~ -~ -~ -~

Uy U Uy Us €K
! ! ! ! ¢

uj ] ) u « €K

~ A ad Nad ~



AN OBSERVATION

THEOREM

If K is not w-regular, then there is no equivalence relation ~ with finite index such
that for all sequences of finite words u;, u;:

i 7.7
/\ui~ui = (uluz‘“EK@uluZ...eK)
ielN

exr €y ex* s
~ ~ - -~
Uy Uy Uy Us cK

l l l l iy

7 /7 2 /

Uy Uy U, Us eK
~ ~ ~ -
exno exm exn exn

ng, Ny, Ny, 3 -~ unbounded



CONGRUENCE GAME

A congruence game on u € {, b} is played between Spoiler and Duplicator
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(1) Spoiler chooses an infinite family W
of pairwise disjoint intervals

(2) Duplicator chooses intervals ; é ; é
Wi< Vi<W, <Vy<- || | | | | | | | .

such that Wy, Wo, ... are from W and Vi, Vs, ..
contain only positions with label  in the word u

(3) Spoiler chooses words
Wi, Wy, ... €X

N o o N e —_——
such that |w;| < |Wj| w1 Wy
(4) Duplicator chooﬂses words ——
UL, €X e e s —_—
such that |v;| < |V wioU Wy vy
(5) Spoiler chooses a sequence of natural numbers
il < i2 < s | med
(6) Duplicator wins the game if and only if % A M o

Wi, Wi, - € L = vy vy, - €L



CONGRUENCE GAME

THEOREM

Duplicator wins the congruence game foru < u€ U.



u € U = Duplicator wins the congruence game for u

(1) Spoiler chooses an infinite family W
of pairwise disjoint intervals

(2) Duplicator chooses intervals
Wi<Vi<Wo<Vy<.o
such that Wy, Wa, ... are from W and Vi, Vs, ..

contain only positions with label - in the word u

(3) Spoiler chooses words
Wy, Wa,... €Y
such that |w;| < |Wj
(4) Duplicator chooses words
UL, Vy,... €3
such that |v;| < |V}

(5) Spoiler chooses a sequence of natural numbers
i < iy <
(6) Duplicator wins the game if and only if

Wi, Wi, - € L = vy v, - €L

Since u € U we can choose the intervals
such that |Vj| > |W| for all i

We can choose v; = w; for all i

Duplicator wins because wj wi, - = vy vy -



u ¢ U = Spoiler wins the congruence game for u

(1) Spoiler chooses an infinite family W

NS such that the lengths of intervals tend to infinity
of pairwise disjoint intervals

(2) Duplicator chooses intervals by choice in (1), liminf | W] = oo

Wi<Vi<Wy<Vy<- since # ¢ U, limsup |Vj| < o

such that Wy, Wa, ... are from W and Vi, Vs, ..
contain only positions with label - in the word u

(3) Spoiler chooses words every finite word appears infinitely often in
Wy, Wa,... €Y Wi, Wa, ...
such that |w;| < |Wj

{4) Duplicator choo*ses words Duplicator constructs an equivalence relation ~
U, Vy,... €EX with finite index

such that |v;| < |V
. . THEOREM
(5) Spoiler chooses a sequence of natural nUMbers  jrk is not -regular, then there is no equivalence relation ~ with finite index such
that for all sequences of finite words uj, uf:
ip < iy < -
(/\ u,~u{> = (muz— €K = wju)~eK)

ieN

(6) Duplicator wins the game if and only if

Wi, Wi, - € L = vy v, - €L
gives a choice for step (5) and Spoiler wins



We proved that

U ={we{a b}” : distance between consecutive b’s is unbounded}

is the set of arenas where Duplicator wins.
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THEOREM

If L is not w-regular and has a neutral letter then Mso+L is undecidable.

PRrooOF.

*  Suffices to show that:
{u : Duplicator wins the congruence game for u}

is expressible in Mso +L.

* A family of intervals can be represented by two sets of positions:

X - the leftmost positions in intervals

Y - the rightmost positions in intervals

*  For round (1) use V, for round (2) use 3
* For rounds (3) and (4) color intervals by 3 \ {1} and everything else by 1
* In round (5) quantify over subsets of intervals, and

* The winning condition in round (6) is checked by the predicate L.



