Extensions of ω-REG

Edon Kelmendi

Jointly with: Mikołaj Bojańczyk Rafał Stefański Georg Zetzsche

Monadic Second Order Theory of ($\omega,>$)

$\exists X \forall y \exists x \quad x \in X \wedge x>y$

Monadic Second Order Theory of ($\omega,>$)

quantify over sets of positions

Monadic Second Order Theory of ($\omega,>$)

X

quantify over sets of positions

Monadic Second Order Theory of ($\omega,>$)

X

there is always a red position to the right
quantify over sets of positions

Monadic Second Order Theory of ($\omega,>$)

X

there is always a red position to the right
$\exists X \forall y \exists x \quad x \in X \wedge x>y$
X has infinite cardinality

BÜCHI'S THEOREM

Theorem (J. Richard Büchi, 1962)

mso theory of $(\omega,>)$ is decidable.

BÜCHI'S THEOREM

Theorem (J. Richard Büchi, 1962)

mso theory of $(\omega,>)$ is decidable.

Are there more expressive logics that are decidable?

Are there decidable extensions?

- (R. M. Robinson, 1958) MSO extended with $f(n)=2 n$ is undecidable. Considered even before decidability of weak mso by Büchi, Elgot, Trakhtenbrot, 1960, 1961.

Are there decidable extensions?

- (R. M. Robinson, 1958) MSO extended with $f(n)=2 n$ is undecidable. Considered even before decidability of weak mso by Büchi, Elgot, Trakhtenbrot, 1960, 1961.
(C. Elgot, M. Rabin, 1966), (D. Siefkes, 1971), (W. Thomas, 1975), ...
"for most natural examples of functions or binary relations
the corresponding monadic second order theory is undecidable"

Extending mso

1. Add a function $f: \mathbb{N} \rightarrow \mathbb{N}$,
2. Add a single unary predicate (i.e. set) $W \subseteq \mathbb{N}$
3. Add a quantifier $Q(X) . \Phi(X)$
4. Add a language $L \subset \Sigma^{\omega}$

Adding unary predicates (sets)

$$
W:=\left\{n^{2}: n \in \mathbb{N}\right\}
$$

Adding unary predicates (sets)

$$
W:=\left\{n^{2}: n \in \mathbb{N}\right\}
$$

Problem

INPUT: \quad Non-deterministic Büchi automaton \mathcal{A} output: Does \mathcal{A} accept W ?

Adding unary predicates (Sets)

Problem

input: \quad Non-deterministic Büchi automaton \mathcal{A} output: Does \mathcal{A} accept W ?
decidable (C. Elgot, M. Rabin, 1966)

Adding unary predicates (sets)

Problem

input: \quad Non-deterministic Büchi automaton \mathcal{A} output: Does \mathcal{A} accept W ?
decidable (C. Elgot, M. Rabin, 1966)
There is a computable $C \in \mathbb{N}$ such that:

$$
\begin{aligned}
& a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b a^{n_{4}} b \cdots \text { is accepted by } \mathcal{A} \\
& \text { iff } \\
& a^{n_{1} \bmod C^{C}} b a^{n_{2} \bmod C^{\prime}} b a^{n_{3} \bmod C^{C}} b a^{n_{4} \bmod C^{C}} b \text { is accepted by } \mathcal{A}
\end{aligned}
$$

Adding unary predicates (sets)

Problem

input: \quad Non-deterministic Büchi automaton \mathcal{A} output: Does \mathcal{A} accept W ?
decidable (C. Elgot, M. Rabin, 1966)
There is a computable $C \in \mathbb{N}$ such that:

$$
\begin{aligned}
& a^{n_{1}} b a^{n_{2}} b a^{n_{3}} b a^{n_{4}} b \cdots \text { is accepted by } \mathcal{A} \\
& \text { iff } \\
& a^{n_{1} \bmod C^{C}} b a^{n_{2} \bmod C^{C}} b a^{n_{3} \bmod C} b a^{n_{4} \bmod C} b \cdots \text { is accepted by } \mathcal{A}
\end{aligned}
$$

(in case of W) the latter is of the form

$$
v u^{\omega}
$$

Adding unary predicates (sets)

squares, cubes, etc., powers of two, powers of three, etc., factorial

Thue-Morse word, all almost-periodic words (Muchnik, Semenov, Ushakov, 2003)
(A. Semenov 1984) and (Rabinovich, Thomas, 2006)

Characterisations of W with decidable mso theory.

Cannot always be easily applied

Adding unary predicates (sets)

$$
W:=\{n: n \text { is prime }\}
$$

Consider the mso formula \exists infinite $V \subset W \forall x \quad x \in V \Rightarrow(x+2) \in W$

Adding unary predicates (sets)

$$
W:=\{n: n \text { is prime }\}
$$

Consider the mso formula
\exists infinite $V \subset W \forall x \quad x \in V \Rightarrow(x+2) \in W$
twin prime conjecture

Adding a quantifier

Express asymptotic properties (more than just " a infinitely often")

- (Michalewski, Mio, 2015)

A quantifier saying:
"the formula holds for sets with full measure" undecidable

- (Mio, Skrzypczak, Michalewski, 2017)

A quantifier related to Baire category \subseteq Mso

$\mathrm{MSO}+\mathrm{U}$

(M. Bojańczyk 2004)

$U X \quad \Phi(X)$

formula Φ holds for arbitrary large sets X

$$
\forall n \in \mathbb{N} \exists X \quad \Phi(X) \text { and }|X| \geq n
$$

$\mathrm{MSO}+\mathrm{U}$

(M. Bojańczyk 2004)

$U X \quad \Phi(X)$

formula Φ holds for arbitrary large sets X

$$
\forall n \in \mathbb{N} \exists X \Phi(X) \text { and }|X| \geq n .
$$

- weak mso+u is decidable (M. Bojańczyk, 2011)
- but the full logic is not (M. Bojańczyk, P. Parys, S. Toruńczyk, 2016)

Adding a language

$$
\begin{aligned}
& L \subseteq\{a, b, c\}^{\omega} \\
& w=a b c a c b a b c b a c a b c \cdots
\end{aligned}
$$

Adding a language

$$
\begin{aligned}
& L \subseteq\{a, b, c\}^{(\omega} \\
& w=a b c a c b a b c b a c a b c \cdots \\
& \begin{array}{llll}
X_{a} & X_{b} & X_{c}
\end{array}
\end{aligned}
$$

MSO $+L$ adds a second order predicate L

$$
L\left(X_{a}, X_{b}, X_{c}\right) \quad \Leftrightarrow \quad w \in L
$$

Adding a language (Examples)

- $\left\{\left(a^{n} b^{n} c\right)^{\omega}: n \in \mathbb{N}\right\}$,
- $\left\{u v^{\omega}: u, v \in \Sigma^{*}\right\}$,
- $\{w$: distance between consec. b 's is unbounded $\} \equiv$ mso +U

$$
\cdots b \overbrace{a a a \cdots a a a}^{\text {unbounded }} b \cdots
$$

- Main Theorem
- Corollaries
- Proof

Main theorem

Theorem

For any non-regular L with a neutral letter, the theory of mso $+L$ is undecidable.

Main theorem

Theorem

For any non-regular L with a neutral letter, the theory of mso $+L$ is undecidable.

The letter $\mathbf{1} \in \Sigma$ is neutral if

$$
w_{1} \mathbf{1} w_{2} \mathbf{1} \cdots \in L \quad \Leftrightarrow \quad w_{1} w_{2} \cdots \in L
$$

for any $w_{1}, w_{2}, \ldots \in \Sigma^{*}$.
$\begin{array}{lll}X_{a} & X_{b} & \mathbb{1}\end{array}$

$\in L$

Squares

Corollaries

A class of languages \mathcal{L} is a cone (or full-trio) if it is closed under:

- images under homomorphisms,
- inverse images under homomorphisms, and
- intersections with regular languages.

Examples: regular, context-free, recursively enumerable languages Examples of faithful cones: context-sensitive, recursive languages

Corollaries

A class of languages \mathcal{L} is a cone (or full-trio) if it is closed under:

- images under homomorphisms,
- inverse images under homomorphisms, and
- intersections with regular languages.

Examples: regular, context-free, recursively enumerable languages Examples of faithful cones: context-sensitive, recursive languages
equivalently (Nivat's theorem)
\mathcal{L} is a cone if it is closed under:

- transductions (non-deterministic Büchi automaton with output)

Corollaries

\mathcal{L} is a cone if it is closed under:

- transductions (Büchi automaton with output)

Corollary

Any Boolean-closed cone \mathcal{L}, that contains a non-regular language, also contains the whole arithmetic hierarchy.
I.e. for any $L \subseteq \Sigma^{*}$ in the arithmetic hierarchy

$$
\left\{u v^{\omega}: u \in \Sigma^{*}, v \in L\right\} \in \mathcal{L}
$$

For languages over finite words: (Zetzsche, Kuske, Lohrey, 2017).

For any $\underbrace{\text { Boolean-closed }}_{\text {logic }} \underbrace{\text { cone }}_{\text {robust }} \mathcal{L}$ either

- $\mathcal{L}=\omega$-REG, or
- \mathcal{L} contains the whole arithmetic hierarchy
complicated

For any $\underbrace{\text { Boolean-closed }}_{\text {logic }} \underbrace{\text { cone }}_{\text {robust }} \mathcal{L}$ either

special

- $\mathcal{L}=\omega$-REG, or
- \mathcal{L} contains the whole arithmetic hierarchy
complicated

Proof

Fix L a non-regular language.
Recall:

$$
U=\left\{w \in\{a, b\}^{\omega}: \text { distance between consecutive } b \text { 's is unbounded }\right\}
$$

It suffices to show that:

$$
U \quad \in \quad \text { Mso }+L
$$

Proof

Fix L a non-regular language.
Recall:

$$
U=\left\{w \in\{a, b\}^{\omega} \quad \text { : distance between consecutive } b \text { 's is unbounded }\right\}
$$

It suffices to show that:

$$
U \quad \in \quad \text { Mso }+L
$$

How to express unboundedness of distances between b 's from the non-regularity of L ?

An Observation

Theorem

A language $K \subseteq \Sigma^{\omega}$ is ω-regular if and only if there exists $\sim \subseteq \Sigma^{*} \times \Sigma^{*}$ that is

- an equivalence relation with finite index,
such that for all sequences of finite words u_{i}, u_{i}^{\prime} :

$$
\begin{aligned}
& \left(\bigwedge_{i \in\{1,2\}} u_{i} \sim u_{i}^{\prime}\right) \\
& \Rightarrow \quad u_{1} u_{2} \sim u_{1}^{\prime} u_{2}^{\prime} \\
& \left(\bigwedge_{i \in \mathbb{N}} u_{i} \sim u_{i}^{\prime}\right) \\
& \Rightarrow \quad\left(u_{1} u_{2} \cdots \in K \Leftrightarrow u_{1}^{\prime} u_{2}^{\prime} \cdots \in K\right)
\end{aligned}
$$

An Observation

Theorem

A language $K \subseteq \Sigma^{\omega}$ is ω-regular if and only if there exists $\sim \subseteq \Sigma^{*} \times \Sigma^{*}$ that is

- an equivalence relation with finite index, such that for all sequences of finite words u_{i}, u_{i}^{\prime} :

$$
\begin{aligned}
& \left(\bigwedge_{i \in\{1,2\}} u_{i} \sim u_{i}^{\prime}\right) \quad \Rightarrow \quad u_{1} u_{2} \sim u_{1}^{\prime} u_{2}^{\prime} \\
& \left(\bigwedge_{i \in \mathbb{N}} u_{i} \sim u_{i}^{\prime}\right) \quad \Rightarrow \quad\left(u_{1} u_{2} \cdots \in K \Leftrightarrow u_{1}^{\prime} u_{2}^{\prime} \cdots \in K\right)
\end{aligned}
$$

$$
\overbrace{u_{0}}^{\epsilon \Sigma^{*}} \overbrace{u_{1}}^{\epsilon \Sigma^{*}} \overbrace{u_{2}}^{\epsilon \Sigma^{*}} \overbrace{u_{3}}^{\epsilon \Sigma^{*}} \ldots
$$

An Observation

Theorem

A language $K \subseteq \Sigma^{\omega}$ is ω-regular if and only if there exists $\sim \subseteq \Sigma^{*} \times \Sigma^{*}$ that is

- an equivalence relation with finite index, such that for all sequences of finite words u_{i}, u_{i}^{\prime} :

$$
\begin{aligned}
& \left(\bigwedge_{i \in\{1,2\}} u_{i} \sim u_{i}^{\prime}\right) \quad \Rightarrow \quad u_{1} u_{2} \sim u_{1}^{\prime} u_{2}^{\prime} \\
& \left(\bigwedge_{i \in \mathbb{N}} u_{i} \sim u_{i}^{\prime}\right) \quad \Rightarrow \quad\left(u_{1} u_{2} \cdots \in K \Leftrightarrow u_{1}^{\prime} u_{2}^{\prime} \cdots \in K\right)
\end{aligned}
$$

$\in \Sigma^{*}$	$\in \Sigma^{*}$	$\in \Sigma^{*}$	$\in \Sigma^{*}$		
$\overbrace{u_{0}}$	$\overbrace{u_{1}}$	$\overbrace{u_{2}}$	$\overbrace{u_{3}}$	\ldots	$\in K$
2	2	2	2		\downarrow
u_{0}^{\prime}	u_{1}^{\prime}	u_{2}^{\prime}	u_{3}^{\prime}	\cdots	$\in K$
$\underbrace{\sim}$	$\underbrace{1}$	$\underbrace{\sim}$	$\underbrace{\sim}$		
$\in \Sigma^{\leq 5}$	$\in \Sigma^{\leq 5}$	$\in \Sigma^{\leq 5}$	$\in \Sigma^{\leq 5}$		

An Observation

Theorem

If K is not ω-regular, then there is no equivalence relation ~ with finite index such that for all sequences of finite words u_{i}, u_{i}^{\prime} :

$$
\left(\bigwedge_{i \in \mathbb{N}} u_{i} \sim u_{i}^{\prime}\right) \quad \Rightarrow \quad\left(u_{1} u_{2} \cdots \in K \Leftrightarrow u_{1}^{\prime} u_{2}^{\prime} \cdots \in K\right)
$$

$\in \sum^{*}$	$\in \sum^{*}$	$\in \Sigma^{*}$	$\in \Sigma^{*}$		
$\overbrace{u_{0}}^{2}$	$\overbrace{u_{1}}$	$\overbrace{u_{0}}$	$\overbrace{u_{0}}^{n}$	\ldots	$\in K$
				\ldots	
2	l	?	2		\downarrow
u_{0}^{\prime}	u_{1}^{\prime}	u_{2}^{\prime}	u_{3}^{\prime}	\ldots	$\in K$
$\underbrace{\sim}$	$\underbrace{\sim}$	$\underbrace{\sim}$	$\underbrace{\sim}$		
$\epsilon \sum^{n_{0}}$	$\epsilon \sum^{n_{1}}$	$\in \sum^{n_{2}}$	$\in \sum^{n_{3}}$		

$$
n_{0}, n_{1}, n_{2}, n_{3} \cdots \text { unbounded }
$$

Congruence Game

A congruence game on $u \in\{a, b\}^{\omega}$ is played between Spoiler and Duplicator
\square
(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals

(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals

(2) Duplicator chooses intervals

$$
W_{1}<V_{1}<W_{2}<V_{2}<\cdots
$$

such that W_{1}, W_{2}, \ldots are from \mathcal{W} and V_{1}, V_{2}, \ldots
 contain only positions with label a in the word u
(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals

(2) Duplicator chooses intervals

$$
W_{1}<V_{1}<W_{2}<V_{2}<\cdots
$$

such that W_{1}, W_{2}, \ldots are from \mathcal{W} and V_{1}, V_{2}, \ldots contain only positions with label a in the word u
(3) Spoiler chooses words $w_{1}, w_{2}, \ldots \in \Sigma^{*}$
such that $\left|w_{i}\right|<\left|W_{i}\right|$

(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals

(2) Duplicator chooses intervals

$$
W_{1}<V_{1}<W_{2}<V_{2}<\cdots
$$

such that W_{1}, W_{2}, \ldots are from \mathcal{W} and V_{1}, V_{2}, \ldots contain only positions with label a in the word u
(3) Spoiler chooses words
$w_{1}, w_{2}, \ldots \in \Sigma^{*}$
such that $\left|w_{i}\right|<\left|W_{i}\right|$
(4) Duplicator chooses words

$$
v_{1}, v_{2}, \ldots \in \Sigma^{*}
$$

such that $\left|v_{i}\right|<\left|V_{i}\right|$

$$
\nabla^{*}
$$

(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals

(2) Duplicator chooses intervals

$$
W_{1}<V_{1}<W_{2}<V_{2}<\cdots
$$

such that W_{1}, W_{2}, \ldots are from \mathcal{W} and V_{1}, V_{2}, \ldots contain only positions with label a in the word u
(3) Spoiler chooses words
$w_{1}, w_{2}, \ldots \in \Sigma^{*}$
such that $\left|w_{i}\right|<\left|W_{i}\right|$

(4) Duplicator chooses words

$$
v_{1}, v_{2}, \ldots \in \Sigma^{*}
$$

such that $\left|v_{i}\right|<\left|V_{i}\right|$

(5) Spoiler chooses a sequence of natural numbers

$$
i_{1}<i_{2}<\cdots
$$

(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals

(2) Duplicator chooses intervals

$$
W_{1}<V_{1}<W_{2}<V_{2}<\cdots
$$

such that W_{1}, W_{2}, \ldots are from \mathcal{W} and V_{1}, V_{2}, \ldots contain only positions with label a in the word u
(3) Spoiler chooses words
$w_{1}, w_{2}, \ldots \in \Sigma^{*}$
such that $\left|w_{i}\right|<\left|W_{i}\right|$

(4) Duplicator chooses words

$$
v_{1}, v_{2}, \ldots \in \Sigma^{*}
$$

such that $\left|v_{i}\right|<\left|V_{i}\right|$

(5) Spoiler chooses a sequence of natural numbers

$$
i_{1}<i_{2}<\cdots
$$

(6) Duplicator wins the game if and only if

$$
w_{i_{1}} w_{i_{2}} \cdots \in L \quad \Longleftrightarrow \quad v_{i_{1}} v_{i_{2}} \cdots \in L
$$

Congruence Game

Theorem

Duplicator wins the congruence game for $u \Leftrightarrow u \in U$.
$u \in U \Rightarrow$ Duplicator wins the congruence game for u
(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals
(2) Duplicator chooses intervals

$$
W_{1}<V_{1}<W_{2}<V_{2}<\cdots
$$

such that W_{1}, W_{2}, \ldots are from \mathcal{W} and V_{1}, V_{2}, \ldots contain only positions with label a in the word u
(3) Spoiler chooses words

$$
w_{1}, w_{2}, \ldots \in \Sigma^{*}
$$

such that $\left|w_{i}\right|<\left|W_{i}\right|$
(4) Duplicator chooses words

$$
v_{1}, v_{2}, \ldots \in \Sigma^{*}
$$

such that $\left|v_{i}\right|<\left|V_{i}\right|$
(5) Spoiler chooses a sequence of natural numbers

$$
i_{1}<i_{2}<\cdots
$$

(6) Duplicator wins the game if and only if
$w_{i_{1}} w_{i_{2}} \cdots \in L$
\Longleftrightarrow
$v_{i_{1}} v_{i_{2}} \cdots \in L$

Since $u \in U$ we can choose the intervals such that $\left|V_{i}\right|>\left|W_{i}\right|$ for all i

We can choose $v_{i}=w_{i}$ for all i

Duplicator wins because $w_{i_{1}} w_{i_{2}} \cdots=v_{i_{1}} v_{i_{2}} \cdots$
$u \notin U \Rightarrow$ Spoiler wins the congruence game for u
(1) Spoiler chooses an infinite family \mathcal{W} of pairwise disjoint intervals
such that the lengths of intervals tend to infinity
(2) Duplicator chooses intervals

$$
W_{1}<V_{1}<W_{2}<V_{2}<\cdots
$$

by choice in (1), liminf $\left|W_{i}\right|=\infty$
since $u \notin U, \lim \sup \left|V_{i}\right|<\infty$
such that W_{1}, W_{2}, \ldots are from \mathcal{W} and V_{1}, V_{2}, \ldots contain only positions with label a in the word u
(3) Spoiler chooses words

$$
w_{1}, w_{2}, \ldots \in \Sigma^{*}
$$

such that $\left|w_{i}\right|<\left|W_{i}\right|$
(4) Duplicator chooses words

$$
v_{1}, v_{2}, \ldots \in \Sigma^{*}
$$

such that $\left|v_{i}\right|<\left|V_{i}\right|$
(5) Spoiler chooses a sequence of natural numbers

$$
i_{1}<i_{2}<\cdots
$$

(6) Duplicator wins the game if and only if
$w_{i_{1}} w_{i_{2}} \cdots \in L \quad \Longleftrightarrow \quad v_{i_{1}} v_{i_{2}} \cdots \in L$
every finite word appears infinitely often in

$$
w_{1}, w_{2}, \ldots
$$

Duplicator constructs an equivalence relation ~ with finite index

Theorem

If K is not ω-regular, then there is no equivalence relation \sim with finite index such that for all sequences of finite words u_{i}, u_{i}^{\prime} :

$$
\left(\bigwedge_{i \in \mathbb{N}} u_{i} \sim u_{i}^{\prime}\right) \quad \Rightarrow \quad\left(u_{1} u_{2} \cdots \in K \Leftrightarrow u_{1}^{\prime} u_{2}^{\prime} \cdots \in K\right)
$$

gives a choice for step (5) and Spoiler wins

We proved that

$U=\left\{w \in\{a, b\}^{\omega}\right.$: distance between consecutive b 's is unbounded $\}$ is the set of arenas where Duplicator wins.

Theorem

If L is not ω-regular and has a neutral letter then mso $+L$ is undecidable.

Proof.

- Suffices to show that:
$\{u:$ Duplicator wins the congruence game for $u\}$
is expressible in mso $+L$.

Theorem

If L is not ω-regular and has a neutral letter then mso $+L$ is undecidable.

Proof.

- Suffices to show that:
$\{u:$ Duplicator wins the congruence game for $u\}$
is expressible in mso $+L$.
- A family of intervals can be represented by two sets of positions:
X - the leftmost positions in intervals
Y - the rightmost positions in intervals

Theorem

If L is not ω-regular and has a neutral letter then mso $+L$ is undecidable.

Proof.

- Suffices to show that:
$\{u$: Duplicator wins the congruence game for $u\}$
is expressible in mso $+L$.
- A family of intervals can be represented by two sets of positions:

$$
\begin{aligned}
& X \text { - the leftmost positions in intervals } \\
& Y \text { - the rightmost positions in intervals }
\end{aligned}
$$

- For round (1) use \forall, for round (2) use \exists
- For rounds (3) and (4) color intervals by $\Sigma \backslash\{\mathbf{1}\}$ and everything else by $\mathbf{1}$

Theorem

If L is not ω-regular and has a neutral letter then mso $+L$ is undecidable.

Proof.

- Suffices to show that:
$\{u$: Duplicator wins the congruence game for $u\}$
is expressible in mso $+L$.
- A family of intervals can be represented by two sets of positions:
X - the leftmost positions in intervals
Y - the rightmost positions in intervals
- For round (1) use \forall, for round (2) use \exists
- For rounds (3) and (4) color intervals by $\Sigma \backslash\{\mathbf{1}\}$ and everything else by $\mathbf{1}$
- In round (5) quantify over subsets of intervals, and

Theorem

If L is not ω-regular and has a neutral letter then mso $+L$ is undecidable.

Proof.

- Suffices to show that:
$\{u:$ Duplicator wins the congruence game for $u\}$
is expressible in mso $+L$.
- A family of intervals can be represented by two sets of positions:
X - the leftmost positions in intervals
Y - the rightmost positions in intervals
- For round (1) use \forall, for round (2) use \exists
- For rounds (3) and (4) color intervals by $\Sigma \backslash\{\mathbf{1}\}$ and everything else by $\mathbf{1}$
- In round (5) quantify over subsets of intervals, and
- The winning condition in round (6) is checked by the predicate L.

